RESEARCH LABORATORIES

HAC REF. J6305

OPTICAL NEURAL NETWORKS BASED ON
DISTRIBUTED HOLOGRAPHIC GRATINGS

Hughes Research Laboratories
3011 Malibu Canyon Road
Malibu, California 90265

August 1996

N00014-92-C-0187

Final Report
29 September 19992 through 28 February 1996

OFFICE OF NAVAL RESEARCH

800 North Quincy Street
Arlington, VA -22217-5660

19970513 070

' DTIC QUALITY INSPECTED 3

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

A dOMB -
REPORT DOCUMENTATION PAGE Form Approve
No. 0704-0188
Ta. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a, SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
. If applicable,
Hughes Research Laboratories (irapplicable) Office of Naval Research
I 6c. ADDRESS (City, State, and ZIP Code) 7. ADDRESS (City, State, and ZIP Code)
3011 Malibu Canyon Road 800 North Quincy Street
Malibu, CA 90265 Arlington, VA 22217-5660
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)
N00014-92-C-0187
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
3701 North Fairfax PROGRAM PROJECT TASK WORK
] ELEMENT NO. NO. NO. UNITACCESSION
Arlington, VA 22203-1714 NO.

11

. TITLE (Include Security Classification)

Optical Neural Networks Based on Distributed Holographic Gratings

 12. PERSONAL AUTHOR(S)

Yuri Owechko
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Final FrRoM_9/30/92 vo_2/28/96 96 August 13 92
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if naecessary and identify by block number)

This final report describes research in optical neural networks performed at Hughes Research Laboratories
under a three-year DARPA sponsored contract the advantages of optics for neural network implementations,
including high storage capacity, connectivity, and very fine-grained parallelism, was demonstrated. The optical
neurocomputer developed under this program is based on a new type of holography which we call multiple
grating holography, in which this approach reduces crosstalk and improves the utilization of the optical input
device. In addition, this optical neurocomputer is the first and, to the best of our knowledge, the only one which
is programmable and capable of implementing a wide variety of neural network models without any hardware
adjustments. Successfully implemented neural networks included the Perceptron, Bidirectional Associative
Memory, Kohonen, and backpropagation neural networks. Up to 104 neurons, 2 x 107 weights, and processing
rates of 108 connection updates per second were achieved. Under this contract, we built an optical neurocomputer
which utilizes a laser diode light source operating at 830 nm. This allowed us to reduce the size of the system.
We also developed a new method for representing bipolar neural weights using coherent detection.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED / UNLIMITED same as RPT. O pric users
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22¢. OFFICE SYMBOL
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

CONTENTS

Page

EXECUTIVE SUMMARYoonitiiiiiinientnieieennsesteestestsesstesesssssessasasssessessessessesssssensenns 1
NEURAL NETWORKS AND THEIR APPLICATIONScoooeeeeee et 3
2.1 Network Network ArChiteCtUIEcccvverviervieiireeeieeeniennieeesneeeseesseeeeeeeessseenans veaees 4
2.2 Learning in Neural NEtWOIKSc.cccvvveriermnenirrnnnieennss eeereeeeseastaeeserteeesanaeeeeerarreeesaes 8
2.3 Application of Holographic Neural NetWorks........cccccevreerecienenenineneneeieenreeeenne, 11
HOLOGRAPHIC IMPLEMENTATIONS OF NEURAL NETWORKSccccovevvvveennee.. 13
3.1 BaSiC ATChITECIUIE ..cueerciiereeerieieeieeterterr et esaes e e st e sreesaaessaesseerseesssesesssssesseossasssesns 13
3.2 Limitations of Conventional Holographic Weight Storagecccccoeeevverveeveeirenrennene. 20
3.3 Multiple-grating HOIOZIaphycoccoueiiriiiiuiriiiiinereciesrceteiceescte s 22
LASER-DIODE-BASEDotitirtitinieiisteseeseesttesaesteeesessseessessssesssesssssssessssessessnsesssenons 29
4.1 Experimental Set-up and Packaging COnceptscccecereverurrcenrienessessrereereereeseeeseenns 29
4.2 Bipolar Weight Representation.........ccoccvccevieeeenircenneenenieinienennreeeeessesseesessseseseessesnns 32
HOLOGRAPHIC NEUROCOMPUTERooociitiiintenieeiieeeeeresrectecsreessseeasesesessssesavenns 36
5.1 PEICEPLION .ttt ettt ettt sttt ettt s et a e s e sn e e sn e s ne 36
5.2 BaCKPIOZAtON ..c..couiiiiiiiiiciiiicictitetnteectesaestsate e e se st e sesas st e st s stasnesaessessessessensensensennen 38
5.3 Self-Organizing Mapccccceveeiereneninrirsirenesrentessessesesesessessessessessessssessessessasssssesseneas 43
5.4 FUture DITECHOMNSevvvercrerreeriiriiriresieesitesseseeeseseseesssessessseessessessssesssesssscsnsessessnsessssesnes 43
SUMMARY ..ottt s seeesteeae s e s s s e e ssesse s sssesbeesbessse s sesbessstesstesassenssesansessssssees 49
REFERENCES ...ttt ssve s es v essas et e e s e s asessessbsesas e st onasessssssssennsessnsanas 51

APPENDICES

A. DESCRIPTION OF HONN SOFTWAREooooeieeitecececteeeteesteee e esteeseessene e A-1
A.1 List of SPONN PrOrams........cecceurerererrreereresisestesessenssessesessssessesesessessosessesnes A-1

A.2 Optical Neurocomputer Program Listing.........c..ccevevereeeveerrerrenecercrereereseeenenne. A-2

B. PUBLICATIONS AND PRESENTATIONS........ooiieeterctiteeieecetesteeseeeeeeeeeeeeenenes B-1
B.1 PUbDliCAIONS ...ccuvieieeiceectecteeteeeeeeeeeste et as e stseseseeessesessaaassnsessnesessnneeas B-1

B.2 PrESENLAtiONScocceeveeeieiiiiiiiieeeeeesteesseesseeseessessteeseessseessesssoessesesssensesssesssessnssnns B-2

96FR1122 Final Report iii

10.

11.
12.

13.
14.
15.

16.

17.
18.
19.

-20.

ILLUSTRATIONS

Page
Structure of Feed-Forward Neural Networkscoceeceveeverviineneesiesieseniinenrene e 5
Neural Network Hardware Performance Parameters and Requirements
Of Various APPlICAtION ATEAScocvererieriererrerciirsiseeestesseserstessesseessesseasseessessesssesseessnennas 6
General Form of the Growth Function m(p), which is equal to 2P
for p Less than dy and then Bends OVercocoeevevicninnininenccencneneccceeseceee e 10
Geometry for Recording Connection Weights Between Neurons Holographically............ 14
K-space Construction of Grating K-Vectors Accessable Using Recording
GEOMELIY OF 2 ...ttt ettt st eas e a e 15
K-space Construction of Cross-Talk Resulting From Bragg Degeneracy........................... 20
Experimental Demonstration of Bragg Degeneracy Using Infrared
Hologram Recorded in c-cut BaTiO3ccoiviiiiiininiiiicieecrenecieeeteeeresresreste e 20
K-space Construction Showing Origin of Vertical Smearing Effect in
Bragg DEegeneracy ...ttt ettt et ene s 22
Optical Connections Made By Scattering From Multiple Cascaded Gratings
Reduce Cross-Talk Due to Bragg Degeneracy and Allow Full Utilization of
Input and Output PIanes..........c.cuciivieuiicininccenieneeetne ettt ser e e a s 23
K-space Construction for Satisfaction of Bragg Conditions at Two
Gratings SIMUIANEOUSLYcocvvieiiiiiirceiirietetresese et be bt s s enes 24
Recording of Connection Using Fanned Reference Beamcccoeeveeeeereverecrcncncenne.. 25
Experimental Demonstration of Recorded Image Quality Using Fanned
Reference Beam and 2-D Non-Subsampled Reference..........coeeeuevvevereeveeenevercrneerennae. 26
Holographic Time Response Of 45°-Cut Batio3 For Writing Wavelength of 514 nm........ 27
Demonstration of Superimposed Holograms Using Fanned Reference Beams................... 27
Demonstration of Fanned-Reference Holography in Batio3 Using Laser
Diode Light Source with a Wavelength Equal to 830 nm.........c.oooeeeevveeveeeceveeeeeeee s 28
Layout of Laser-Diode-Based Optical Neurocomputer. Photograph of Laser
Diode Based Optical Neurcomputer On 2'x2' Optical Breadboard..............cccoeevvrueruenneen. 30
Packaging Concept for Optical Neurocomputer Using Off-The-Shelf Components 31
Algorithm for Bipolar Representation of Weights And Neuron Valuescuceun........ 34
Balanced Coherent-Detection Readout of Positive and Negative Weight '
Values in a BaTiO3 Crystalcoccooevvevevivnvenececeeeeeeenene et resaaeas 35
Optical Perceptron Learning of 96 Exemplar Patterns with 1920 Input
Neurons and Incoherent Detection Method. Optical Perceptron Learning
Using Balanced Coherent Detection Methodccceveeeeereererereneereecceeceeeesesee e 37

96FR1122 Final Report iv

21.

22.

23.
24.
25.
26.
27.
28.
29.
30.

31.
32.
33.
34.

ILLUSTRATIONS

Page
Multi-Output-Neuron Single-Layer Optical Perceptron Learning of
4 Random Input/Output ASSOCIALIONScoeriviruerierereriirerinsiereeseisteseesseeeset e st et saene 38
Examples of Handwritten Digit Exemplars from the Post Office
Database Used for Optical Neural Network Learning..........ccccceeeveveienieveirenseennenrencneereenne. 38
Optical Perceptron Learning Curve for the Handwritten Digit Problem............................. 39
Optical Input Plane for Backpropagation with a Single Hidden Layerccccccevenuennnnn. 40
Optical Backpropagation Learning of Two Random Input/Output Associations 41
Behavior of Optical Neurons During Backpropagation Learning And Readout................. 42
Optical Backpropagation Learning of Handwritten Digits.........ccccovevvecteveevenceninneereesenennns 43
Results for Optically-Implemented Kohonen Self-Organizing Neural Network 44
Optical Implementation of Partially Connected Neural Networks........co.cceeeeeeecruererenncnnene. 44
Partial Connectivity can be Programmed in Optical Neural Networks
by Controlling the Mutual Coherence of Optical Neurons.........ccocceeeeeceereerrverreneesesreeeenne. 45
Optical Neurocomputer Based on Smart Pixelscccoeveeerveerereenrinsineienneesrrneseseecreenens 46
Parallelism of Smart Pixel Based Holographic Neural Network...........coceeeeeveevvernvenvenennen. 47
Development Paths of Holographic NeuroCOmputer.............cccoeeveeieerrerseeseseerrenseessenneennes 47
Holographic Optical Neural Network Development Pathscoceeveceeveiecncieceeeeneeeeene, 48

96FR1122 Final Report v

1. EXECUTIVE SUMMARY

This final report describes research in optical neural networks performed at Hughes Research
Laboratories under a three-year DARPA sponsored contract (N00014-92-C-0187). This contract was
a continuation of work performed under a previous three-year contract in which a programmable
optical computer for flexible implementation of neural network models was designed, built, and
demonstrated. The advantages of optics for neural network implémentations, including high storage
capacity, connectivity, and very fine-grained parallelism, was demonstrated. The optical neurocom-
puter developed under this program is based on a new type of holography which we call multiple
grating holography, in which the neural network weights are distributed among cascaded angularly-
and spatially-multiplexed gratings. This approach reduces crosstalk and improves the utilization of
the optical input device. In addition, this optical neurocomputer is the first and, to the best of our
knowledge, the only one which is programmable and capable of implementing a wide variety of neu-
ral network models without any hardware adjustments.

Under our first contract, we designed, built, and demonstrated an optical neurocomputer based on
a water-cooled argon laser with a wavelength of 514 nm. This system was relatively large as it
occupied most of a 4' X 5' optical table. Successfully implemented neural networks included the
Perceptron, Bidirectional Associative Memory, and backpropagation neural networks. Up to 104
neurons, 2 X 107 weights, and processing rates of 2 X 107 connection updates per second were
achieved. Under our second contract, which is the subject of this report, we built a second genera-
tion system which utilizes a laser diode light source operating at 830 nm. This allowed us to reduce
the size of the system to the point where it fits on a 2' X 2' optical breadboard. Packaging concepts
were formulated which would allow the system to fit in a 1' X 1' X 6" package using the same com-
ponents as in the present system. We also developed a new method for representing bipolar neural
weights using coherent detection. In addition to the neural networks mentioned above, we also
implemented Kohonen’s self-organizing map algorithm and applied it to handwritten digit recogni-
tion. Finally, we increased the learning/readout processing rate to 108 connection updates per
second.

The organization of this final report is as follows. First, we briefly describe the nature of neural
network models and the types of problems they are best suited to address. We describe real-time
holography and its advantages and disadvantages for neural network implementations in terms of
storage capacity, connectivity, and parallel processing. A new holographic technique, multiple grat-
ing holography (MGH), was developed by us to overcome an important source of distortion in holo-
graphic neural networks. We demonstrated MGH in photorefractive BaTiO3 crystals using both
visible light (514 nm) from an argon laser and infrared light (830 nm) from a laser diode. The
infrared experiments are especially significant because very compact systems can be built using laser
diode light sources.

We then discuss the design and construction of the optical neurocomputer based on MGH. The
number of neurons, number of layers, and the neuron activation function can all be programmed
without hardware adjustments. We believe ours is the first truly programmable optical neurocom-

96FR1122 Final Report 1

puter. In addition, the simple system design requires only a single crystal, input spatial light modula-
tor, and output detector regardless of the network configuration. The entire system was built from
presently available off-the-shelf components. We also discuss packaging concepts in which the
entire system is contained within a 1' X 1' optical breadboard.

96FR1122 Final Report 2

2. NEURAL NETWORKS AND
THEIR APPLICATIONS

The great success of conventional Von-Neumann computers and procedural programming tech-
niques in solving algorithmic problems in science and engineering contrasts with the far slower
progress in solving the ill-defined problems at which humans and animals excel, such as recognizing
individual faces. It is readily apparent that the lowliest animal can perform feats of cognition which
are beyond the abilities of the most powerful supercomputers programmed by the most talented
computer scientists. The field of artificial neural networks has grown substantially in recent years as
workers draw inspiration from biological nervous systems for approaches to solving such problems.
In this final report we discuss a hardware architecture based on optical holography which is well-
suited for efficient implementation of neural network models.

What distinquishes “easy” from ‘“hard” problems for conventional procedural methods?
Computational problems can be described in terms of many attributes. One of the most fundamental
measures is the degree of “randomness” or algorithmic complexity of the problem. Algorithmic
complexity can be defined as the length of the shortest procedural computer program that can gener-
ate a solution to the problem.! A completely random problem has very high algorithmic complexity
since the only way to describe the solution is to literally list all the possible answers. This is analo-
gous to the fact that the only way to describe a truly random number is to list all of its digits. No
shorter algorithm exists.

By definition, nonrandom highly structured problems with low algorithmic complexity are best
solved using traditional computer programs. In contrast, many problems involving natural data have
a high degree of randomness, especially pattern recognition problems involving noisy data. These
are problems that biological organisms excel at compared with classical algorithms in which rules
are assumed a priori (before the calculation begins). Biologically inspired neural network models
are useful for solving such highly complex problems in which the algorithmic solution is unknown
and the required transformations must be learned from examples. They offer an alternative to stan-
dard linear and nonlinear statistical methods because, unlike other approaches, models of the data do
not have to be assumed a priori, although prior information can (and indeed should) be incorporated
if it is available. The nonlinear logical structure of neural networks also allows great flexibility in
representing transformations.

In this final report we describe a particular hybrid optical-electronic architecture for implemen-
tation of artificial neural networks. The architecture is a good match for the requirements of neural
networks because of the large storage capacity and parallel processing capabilities of optics. It takes
advantage of a fortuitous match between the physics of holography in photorefractive crystals and a
very general neural learning rule known as Hebb’s Law. The architecture features a new recording
method which eliminates an important source of distortion in holography. We have demonstrated
several neural networks running on our optical neurocomputer. But first, let us discuss the structure
and capabilities of neural networks.

96FR1122 Final Report 3

2.1 Network Network Architecture

Neural network models of computation consist of many simple processing nodes or “neurons”
which communicate with each other via interconnection weights. The nodes are called neurons in
acknowledgement of the vastly more complex biological neurons which inspire neural network
models of computing. The key word here is inspire. Only a very small fraction of the neural net-
work models that have been proposed can be considered biologically relevant. Nevertheless, just as
aircraft designs do not try to emulate birds in every way, so is faithfulness to biological accuracy of
neural networks often relaxed in the interests of theoretical and physical practicality. In other words,
although inspired by anatomical observations, the neural networks discussed here were conceived
and developed in an engineering context. They should therefore be evaluated as engineering solu-
tions to computational problems, not as accurate models of biological nervous systems. Knowledge
of the actual information processing principles of biology is, apart from a few general principles, still
largely unknown, although much progress has been made.

Many types of neural networks can be defined. The basic neural network structure is a directed
graph with neurons at each node. The edges of the graph represent weighted connections between
the neurons. Each neuron processes the weighted signals from other neurons, calculates a result, and
passes it on to other neurons. The computation that the neural network performs is determined both
by the topology of the graph and by the values of the connection weights. The weight values can be
calculated “off-line” and loaded into the network, as in certain networks designed for optimization
problems, or they can be “learned” by the network. (More on this later.)

Various classes of neural networks have been defined. They include random, recurrent, and lat-
erally connected networks. In this chapter we will concentrate on the most widely-used topology:
multi-layer feed-forward neural networks. A diagram of the logical structure of such a network is
shown in Figure 1. The neurons are arranged in layers with connections between layers only.
Associated with each neuron i in layer n is an activation level y;" which is calculated by passing a
weighted sum of the activation levels of a subset of other neurons in the previous layer through a

nonlinearity f:
(n) _ o ,(m)
¥ = f(xi - ei)
xlgn) = waln)yy’l - 1) (1)
J

where 0; is an adjustable threshold value. The nonlinearity f is typical a “sigmoid” function such as

flx)= 2)

1+e™

which is monotonically increasing and limited between O and 1 (or between -1 and 1). Patterns
which are input to the network through the bottom layer are transformed into top layer patterns
which represent the result of the computation. The “program” or instructions for the computation is
encoded in the structure of the network (int_erconnection pattern) and the weight values, wjj, of the
interconnections.

96FR1122 Final Report 4

962 1-00-046

Networks with a single layer of weights can OUTPUT PATTERN
only solve “separable” problems for which a T
solution can be obtained by separating disjoint Ly
classes of patterns with a.hyperpl.ane in pattern Vi 1)=f[2w_k (1)Yk(0)]
space.2 However, by adding a “hidden” neuron } PER
layer with enough neurons, any nonlinear
transformation can, in principle, be represented by
a neural network.3 Let us define “pattern space” Lo
as a space where each coordinate represents the
activity level of an input neuron. Then an input
pattern defines a single point in pattern space.
The hidden layer allows the network to divide Figyre 1. Structure of feed-forward neural net-
pattern space into disjoint regions using works.
combinations of hyperplanes. These regions of
pattern space can be logically combined by the output layer in order to form the final result of the
calculation. It is sometimes worthwhile to add a second hidden layer in order to improve
performance.

Implementing large neural networks while maintaining computational parallelism is a daunting
task for electronic architectures due to the 2-D nature of electronic interconnects. Most of the area
on analog or digital electronic neuro-chips is taken up by the interconnects while implementing only
moderate numbers of neurons. Optical implementations of neural networks are attractive because of
the large storage capacity and, most importantly, the parallel access and processing capabilities of
optics. Optical architectures can exploit 3-D free space interconnects, allowing the input and output
planes to be fully populated with highly interconnected neurons (N=0(10%)). Moreover, an entire
weight layer can be updated in one time step. The optical neurocomputer described in this chapter
uses 3-D weight storage based on volume holography. The primary motivation for considering vol-
ume holograms as a storage medium for neural networks is the potential for extremely high storage
capacity combined with fully parallel processing of the weights during both the learning and reading
phases.

Of course, an important issue is how to find the proper weight values for solving a particular
problem. Although no general method has been discovered, many neural net architectures have been
designed and demonstrated for specific applications. Various techniques have been developed for
“learning”, which may be defined as the non-algorithmic adjustment of connection weights to solve
problems in such fields as pattern recognition, vision, and robotic control. Issues related to learning
are discussed in the next section. But first, let us consider the requirements for neural network hard-
ware imposed by various applications.

Figure 2 is an adaptation of a figure which originally appeared in the final report of the 1988
DARPA Neural Network Study. It shows the potential application areas of neural networks mapped
onto a 2-D space in which one axis is the storage required in terms of the number of weighted con-
nections and the other axis is the processing rate required in connections per second. The corre-

Y,

96FR1122 Final Report 5

...............................

tech q-lughes (Learng & Readout) _
eadout) ‘OCM-2 :

SPEED (CONNECTIONS/SECOND)

106 - P _ l:lSun4 S 1 WAnalog Chips
catech® v A .| mDigital Chips/Boards
(Learning) i ‘I ODigital Computers
104 Al S EOptics (HONN)
102 ' SN TR NN TRSMO N KON B 18
102 104 106 108 1010 1012 1014

STORAGE (CONNECTION WEIGHTS)

Figure 2. Neural network hardware performance parameters and requirements of various
application areas. Electronic and optical technologies tend to be complementary in their capabilities.
Optics is most well-suited for implementing large neural networks with hlgh connectivity and storage
requirements.

sponding estimated parameters of some biological systems are included. A variety of recent elec-
tronic implementations, denoted by open squares#, have also been added to Figure 2. The electronic
implementations are, apart from the Sun and Cray computers, specialized analog and digital chips.
Not all of the neuro-chips implement learning. (For non-learning chips, weight values must be
determined by other means and then loaded in.) Finally, diagonal lines of constant network update
time were added to the figure. The update time is the time required for information to pass from the
input of the network to the output. Of course, such a plot is necessarily a highly folded and simpli-
fied projection of a multi-dimensional reality onto a two-dimensional graph. For example, the
degree of local vs global connectivity is ignored as well as the algorithmic complexity of the applica-
tion. In some cases every neuron is connected to every other neuron while in others the neurons may
be sparsely interconnected. Also, in some hardware implementations the learning rate is much
slower than the readout rate. Nevertheless, with proper caution we can observe certain trends.

It is interesting that the potential application areas in robotics, speech, and vision cluster around
the 10 msec network update time line. These applications require large numbers of weights in order
to achieve the complexity required to solve the problem, but the solution does not need to be
obtained in less than a few milliseconds. The large number of weights, however, requires very high

96FR1122 Final Report 6

processing rates to achieve this update time. Interestingly, the biological systems also cluster around
the 10 msec update line, reflecting the typical time constants of neural signals. With the exception of
the general purpose computers, the electronic implementations have relatively modest storage capac-
ity, although their processing rates are high. (Ignoring the fact that many of the chips do not have
on-chip learning.) This is due to the 2-D nature of VLSI which limits the number of connections that
are practical. They therefore appear most suited to signal processing applications in which fast
update times and modest storage are required. (For example, such chips will soon appear in TV sets
implementing noise reduction and line interpolation functions. The neural chip learns to form a bet-
ter and cheaper filter than current designs.)

In our view, optical neurocomputers are complementary to electronic versions in that the 3-D
connectivity and parallelism of optics permit the implementation of very large networks with high
processing rates and relatively modest network update times. The projected future performance of
holographic optical neural networks (HONN) is indicated by the region marked “Future HONN” in
Figure 2, a level of performance beyond that forecast for electronic architectures. HONN perfor-
mance is bounded by two fundamental physical limits. The photon limit limits how short the net-
work update time can be since a minimum number of photons integrated over the update time is
required for an adequate detector signal to noise ratio. The holographic storage limit determines the
maximum number of weights that can be stored. We predict that the highest performing HONNs
will be based on smart pixel technology, as opposed to SLMs (spatial light modulators). In order to
fullfill their potential and find market acceptance, such optical neurocomputers should include, first,
large numbers of neurons and weights with programmable connectivity; second, distortionless soft-
ware mapping of a variety of neural network algorithms without requiring hardware reconfiguration;
third, co-processor-type interfacing to a host electronic computer; and fourth, hardware simplicity for
low cost and compact packaging.

In Section 4 we describe an experimental optical neurocomputer which serves as a testbed for
meeting these requirements. The neurocomputer is a nonlinear, highly interconnected, parallel, and
analog opto-electronic computer based on real time holography. The present performance of our
second generation laboratory prototype developed under this contract is indicated by the filled square
labeled “Hughes” in Figure 2. Two other proof-of-concept holographic neural networks are also
shown in Figure 2. The Caltech HONN is a single-hidden-layer network that has been used to rec-
ognize human faces.5 Because each hidden neuron was trained sequentially, the learning speed was
much less than for readout. The Northrop HONN is an inner product processor which correlates an
input image with 5000 separate filters simultaneously.® The storage and readout performance figures
are impressive, and prove the capabilities of holographic storage. However, learning was not imple-
mented and the time required to load the weights into the holographic crystal was relatively long,
again because each filter was recorded sequentially. Unlike our prototype, the other HONNs are not
programmable and were built to implement a specific neural network.

Before we delve into the details of holography and optical neurcomputers, let us first continue
our discussion of neural networks by exploring what may be their most fascinating feature: the abil-
ity to “learn” how to solve problems.

96FR1122 Final Report 7

2.2 Learning in Neural Networks

What do we mean when we say neural networks can “learn”? We mean that by providing exam-
ples of a function operating on input patterns, and by adjusting the weights using a learning algo-
rithm, a neural network can converge to an approximation of the function. In theory, the function
can be quite general, including, for example, such tasks as recognizing a face or controlling a robotic
arm. If the approximation is a good one, new input patterns that were not part of the training set will
also be correctly processed by the network, in the sense that the network outputs will be close to
those of the function being modeled. In this respect the network has learned to “generalize” from a
finite set of exemplar transformations by properly processing novel patterns that are not members of
the training set. The network does this by extracting common features in the exemplars and encod-
ing them in the weights. Although the general problem of learning an arbitrary transformation for a
completely random problem has been shown by Judd’ to be a member of the NP-complete class of
problems (therefore probably requiring exponential increases in learning time as the problem size
increases), in practice specific problems in pattern recognition involve at least partially structured
data for which the learning time can often be reduced to a polynomial function of problem size.

Some neural models such as the Hopfield network don’t learn in the sense discussed above.
Instead, the weight values are calculated according to a given algorithm or recipe. The multilayer
perceptron ﬁsing backpropagation, on the other hand, is an example of supervised learning. Using
an error signal generated by an external “teacher”, the network is trained to minimize the differences
between the exemplar and network output patterns. In unsupervised learning, input exemplars are
presented to the network without external guidance as to what the correct output should be. The
network then clusters them into self-similar classes. Examples of this kind of network are
Grossberg’s Adaptive Resonance Theory® networks and Kohonen’s Self-Organizing Maps.?

Neural networks can be viewed as pattern recognizers or classifiers. It is therefore natural to
compare them with statistical pattern recognition techniques. As in neural network learning, the goal
of classical statistical pattern recognition is to estimate the a posteriori probability P(w;lx) that a
given pattern x belongs to class ;. In statistics, a posteriori probabilities are calculated from obser-
vations while a priori probabilities are determined from past knowledge or measurements. Once we
know P(wjlx) the problem is solved: the correct class is determined by the largest P(w;lx). This pro-
cedure is the optimum one in a statistical sense and is known as the Bayes optimum discriminant
function. Unfortunately, the a posteriori probabilities and discriminant functions derived from them
are generally unknown. The methods of classical statistical pattern classification are to a large
degree concerned with the use of Bayes Rule to estimate a posteriori probabilities from measure-
ments of a priori probabilities. Bayes Rule is '

P(x|w,)P(w,)

P(o;1x)= (0

(3)
where P(xlwj) is the a priori probability of pattern x occuring given class ®;, P(wj) is the a priori
probability of class wj, and P(x) is the a priori probability of pattern x without regard to class mem-
bership. Using the definition of conditional probabilities,

96FR1122 Final Report 8

P(x)= Y P(x0,)P(0;))

Ruck et al.10 have shown that neural networks can be trained to directly give unbiased estimates of
the a posteriori probability P(wjlx). In fact, they showed that the outputs approach P(w;lx) for any
neural network with outputs between 1 and 0 which is trained to reduce the mean-square error for the
exemplar set. The outputs of a network can therefore provide a confidence measure for classifica-
tion. Of course one still has to choose a neural network structure with a set of parameters suitable for
modeling the probabilities.

The size and structure of a neural network has a great effect on its generalization ability. In gen-
eral, too small a net won’t be able to model the problem, but too large a net will not generalize well.
This is because overly large networks with too many degrees of freedom can find solutions that are
consistent with the exemplar set but which are not at all a general solution to the problem. For
example, if the number of neurons in the hidden layer of a multilayer perceptron is much larger than
the number of training exemplars, then the net has enough degrees of freedom to find specialized
solutions which agree with the exemplars but do not generalize to new inputs. Such a situation is
analogous to the overfitting of a low-degree curve with a high degree polynomial: the original data
points can be fitted very well but new points can lie far from the curve. Good generalization depends
on finding the simplest neural network which correctly processes the exemplar set.

Although no theoretical result exists that prescribes the best network structure for a given specific
problem, recent work in learning theory has resulted in some theoretical bounds that can provide
guidance for designing neural networks that will generalize well. Let’s assume we wish a neural
network to learn a particular Boolean function F(x) from a set of p exemplars. The exemplars are
drawn from a class of patterns, C, with common properties. If fy(x) is the function that the network
actually implements for a given set of weights, then we wish to find the generalization g(fy), which
is defined to be the probability that fy,(x)=F(x) for pattern x randomly drawn from C. Let’s also
assume that, after learning, a fraction gp(fw) of the exemplar set is correctly processed by the net-
work. The question we would like to answer is how well does the network perform on patterns
which are members of C but not of the exemplar set? In other words, how close is g(fy) to gp(fw)?
We cannot blindly assume g(fw)=gp(fw) because gp(fw) may be strongly biased towards the exem-

plars (the overfitting problem).
By considering how many different functions a given neural network can implement, Vapnik and

Chervonenkis!1 proved an upper bound to the difference between gp(f) and g(f) for any possible
function f implementable by the network:

Prob mfaxlgp(f)-gl f)| > |<4m(2p)ec'?" 5)

The growth function m(p) is defined to be the number of different binary functions that can be
implemented by the network on any set of p input patterns. It is clear that m(p) cannot be more than
the number of possible binary functions of p points, which is 2P. The left hand side is the probability

96FR1122 Final Report 9

that the estimate of generalization, based on the p fogam 9621-00-047

exemplars, differs from the actual generalization
by more than €. In particular, if we can show that
the right hand side is small for small €, then we
can be sure that if the performance on the
exemplar set is good then with high probability
the performance will also be good for new |
patterns drawn from the same distribution. |
Vapnik and Chervonenkis proved that m(p) :
always looks as shown in Figure 3. It is equal to '
2P up to the point p=dyc, where the growth starts |
to slow down. dy c is called the Vapnik- I
Chervonenkis dimension, or VC-dimension. It is l
a function of the structure of the network and the dyc
number of neurons and weights. Clearly for the

> p

lizati hould 1 Figure 3. General form of the growth function
best generalization we shou Use a Neurdl m(p), which is equal to 2P for p less than d,,; and
network with the smallest dy ¢ which is still then bends over.

capable of representing solutions to the problem at
hand. In general, a given neural network structure cannot implement any arbitrary binary function.
This implies that dyc is finite for most networks. It can be shown that if dyc is finite, then m(p)

obeys the inequality
m(p)< p™ +1 (6)

which can be plugged into the above expression in order to obtain an upper bound for the generaliza-
tion error. dyc has been estimated for several different networks. For example, single-layer
Perceptrons can only implement separable dichotomies of patterns so for that class of networks dyc
is equal to the number of input neurons.!2 Baum and Haussler calculated upper and lower bounds to
dyc for multi-layer feed-forward networks.13 They found that dyc is upper bounded by

dye <2Wlog,(eM))

where | x | is the largest integer not greater than x. Taken together, these results indicate that in gen-
eral one needs of the order of W/e exemplars in order to obtain a generalization error less than €.
Based on the above results, a practical rule of thumb for good generalization is that the number of
exemplars should be a few times larger than the the number of weights in the network. Bear in mind,
however, that this estimate comes from a worst case analysis. For any particular problem, it may be
possible to use fewer exemplars, especially if a priori knowledge about the solution can be incorpo-
rated in the network structure. Various techniques have been developed to reduce dyc by pruning
unimportant weights, using local connections, sharing weights, or allowing weights to decay.14
Another method to reduce dyc by incorporating prior information is to provide “hints” to the net-

96FR1122 Final Report , 10

work.15 For example, translational invariance can be built into the network structure so that it

doesn’t need to be learned.
An important parameter of neural networks is the connectivity, K, which is the number of

synapses or weights connected to a neuron. Abu-Mostafa has shown that K should be large for at
least two reasons.16 First, since the neurons essentially implement K-input threshold functions, one
K-input neuron with K associated weights is equivalent to order K2 two-input neurons with 2K?2
associated weights. Thus far fewer weights are required if the neurons have high fan-in and fan-out.
Second, he showed that, in order for a neural network to learn, the connectivity K must exceed the
entropy H of the environment where H is the logs of the number of input patterns typically generated
by the environment. H increases as the randomness of the problem increases.

2.3 Application of Holographic Neural Networks

As discussed in Section 2.1, the most likely market entry points for HONN are applications
which require large neural networks to represent the solution to complex problems. The computation
rate must also be high in order to obtain a solution in a reasonable amount of time. The following
list is not meant to be inclusive, it only serves to illustrate the types of applications that could benefit

from commercialized HONN technology.

Machine Vision. The problem of automated recognition of objects in an input scene is an impor-
tant one and its solution would have major beneficial effects on industrial productivity and the econ-
omy. The general problem of recognizing 3-D objects from 2-D projections of a scene is under-con-
strained and hence intractable without incorporating additional knowledge. By demonstrating just
how difficult object recognition really is, research in machine vision has verified the remarkable
computational power of the biological vision system. Practical machine vision systems must greatly
restrict the domain of possible input scenes in order to be successful. Applications for machine
vision include cursive handwriting recognition for signature verification, automated note transcrip-
tion, and Postal Service mail sorting; segmentation of satellite imagery; industrial part inspection;
and target recognition for terminal guidance of missiles, among others. Many of the most successful
approaches to these problems are based on neural networks or use neural networks as at least one
element of the processing chain. Neural networks can be used both in the “front end” for extracting
primitive features from the raw data and in the “back end” for data fusion, classification, and final
identification of objects.

Input scenes typically contain many pixels, from hundreds to hundreds of thousands. Neural
networks are intrinsically parallelizable, but processing a scene in parallel would require such large
numbers of neurons that electronic implementations must scan the image at a large cost in processing
time. The parallelism and high storage capacity of HONN architectures allow much greater numbers
of neurons to be implemented, thus making the parallel processing of input scenes tractable. The
parallelism of HONN is also flexible: many feature maps can be generated simultaneously for classi-
fication of multiple objects in a scene.

A generalization of neural networks, called “higher order” neural networks, has many theoretical
advantages for machine vision.17 In higher order neural networks, weights are formed not between

96FR1122 Final Report 11

neurons, but between products of neuron values. The weight matrix then becomes a weight tensor.
For example, the output of a layer in a third-order neural network is given by

Yi= f(zzxwijklxjxkle
7 Ok 1

®)

The usefulness of higher-order neural networks lies in the fact that various invariances can be built
into the network. For example, a third-order neural network can be made to be invariant to rotation,
scale, and translation shifts of objects in the scene by forcing the weights to be of a particular form.
The network then responds only to groupings of triangles. Similar triangles with the same interior
angles evoke identical responses, the network is then automatically invariant to scale, rotation, and
translation shifts. Such invariances are obviously useful for machine vision. Higher-order neural
networks have not been widely used because of the large increase in weights that occurs when con-
nections are made between products of neuron values. The ability of HONN to implement large
networks may be an enabling technology for the application of higher-order neural networks to

machine vision problems.

Speech Recognition. Most current state-of-the-art continuous speech recognition systems are
based on hidden Markov models. A hidden Markov model (HMM) is a stochastic finite state
machine. At any one time the HMM may be in one of a set of “states” that are hidden from direct
observation. A transition probability distribution describes the time evolution of the HMM as it
evolves from state to state. The HMM is also characterized by an observable output symbol which is
described by an observation probability distribution. In speech recognition systems the observation
probabilities are used to model time-localized speech features (phonemes) and the transition prob-
abilities model the time evolution of the phonemes.

Neural networks have been used to significantly improve the performance of HMM-based speech
recognition systems by estimating the HMM observation probabilities from training data. Moreover,
the context-dependence of phoneme structure can be modeled. In speech the spectral content of a
phoneme depends on the phonemes that come before and after it. Neural networks can incorporate
this contextual information in the estimated observation probability distributions. The combined
neural network-HMM results in superior performance and a reduction in the number of model
parameters compared to context-dependent HMMs. Because of the large number of possible
phoneme features and contexts, large neural networks are used in the speech recognition application.
For example, one group has used a neural network with 1.4 million weights in a context-dependent
neural network-HMM speech recognition system.18 The size of the network was limited by the spe-
cial purpose electronic hardware used in the training phase. A HONN would allow much larger neu-
ral networks to be implemented, thereby increasing the number of contexts and further improving the
speech recognition system performance.

These are only some example applications of neural networks. Other applications include finan-
cial analysis, associative retrieval of information, optimization problems, and process control.1?

96FR1122 Final Report 12

3. HOLOGRAPHIC IMPLEMENTATIONS
OF NEURAL NETWORKS

3.1 Basic Architecture

Optical neural networks divide naturally into two classes distinquished by the dimensionality of
the weight storage medium. Weights can be stored in 2-D or 3-D formats. Example 2-D weight
storage media include film, SLMs, and optical disks while almost all of the 3-D formats use photore-
fractive crystals as the storage medium. The optical processor described here uses 3-D weight stor-
age based on volume holography. The primary motivation for considering volume holograms as a
storage medium for neural networks is the potential for extremely high storage capacity and fully
parallel processing of the weights in both the learning and reading phases.20

In holographic optical neural networks, neurons are represented by pixels on spatial light
modulators (SLMs). For our purposes an SLM can be described as an adjustable transparency
consisting of a 2-D arrangment of pixels which is controlled by a host computer. The transmission
of a pixel corresponds to the activation level of the neuron. By placing the SLM in the back focal
plane of a lens and using coherent readout, as shown in Figure 4, the pixels are converted to coherent
beams which illuminate a real-time holographic medium. Weights between neurons are formed
when a pair of light beams interfere in the holographic medium, forming a volume sinusoidal light
intensity pattern. The photorefractive effect is a suitable physical mechanism for converting this
light intensity pattern into a semipermanent deformation of the optical properties of the material,
thereby recording the weight values. A variety of optical neural networks based on holography have
been proposed or demonstrated.21-23

In the photorefractive effect incident light excites charges into the conduction or valence band.
These charges then are transported by diffusion and drift until they fall into empty traps, creating an
internal space-charge field which in turn modulates the birefingence of the material through the
electro-optic effect. This results in a phase grating in the material. Because of the long dark decay
times of some of these materials, the phase gratings can be stored with a time constant of many
hours. (Storage for longer periods is also possible in some materials using various fixing methods.)
When one of the original two beams subsequently addresses the grating, the other beam is recon-
structed.

The diffraction efficiency of the semi-permanent phase grating represents the connection weight
formed between the neurons that wrote the grating. It is proportional to the outer-product of the
amplitudes of the writing beams and has a fortuitous similarity to the Hebbian learning rules of many
neural network models. This equivalence between the outer-product form of the diffraction effi-
ciency and neural network learning forms the basis for implementing the weights directly using the
analog laws of physics rather than digital representations as in conventional computers. Learning
can be implemented in photorefractive optical neural networks since the weights can be selectively
increased or decreased. - Reading out the grating partially erases it unless the readout beam is much
weaker than the original writing light or the crystal is fixed using special techniques. ‘

96FR1122 Final Report 13

y 9229-06-07

OBUJECT | ' ¥-~--~{F - f™==zz--
PLANE

HOLOGRAM

REFERENCE
PLANE

Figure 4. Geometry for recording connection weights between neurons holographically.

The angular or Bragg selectivity of a volume photorefractive grating can be very high which
results in large storage capacities. The Bragg condition states that a beam will be reconstructed only
if the angle of incidence of the incident beam relative to the grating is approximately equal to that of
the original writing beam. The angular selectivity for reconstruction can be calculated from coupled
mode theory24 and is given by

rAg=—2)

B nT, sing

where T; is the grating thickness, A is the optical wavelength, n is the index of refraction, and ¢ is the
angle between the two writing beams. Note that the selectivity is greater for thicker crystals. Each
individual light beam can be represented by a wavevector or k-vector. (The direction of the k-vector
corresponds to the direction of propagation and the magnitude of the k-vector is the inverse of the
wavelength.) By using phase matching arguments, the Bragg condition can be described geometri-
cally as a vector sum: Kj + Kg = Kj, where Kjand K| are the wavevectors of the incident and
diffracted beams, respectively, and Kg is the grating wavevector.

A geometrical construction for the theoretical storage capacity of a.volume hologram can be
drawn in grating k-space, as shown in Figure 5. If one writing beam varies over solid angle 6, while
the second writing beam varies over angle 0, then the vector difference between the two beams (the
grating wavevector Kg) will trace out a three-dimensional region in k-space (shaded gray in
Figure 5). This volume represents the region of k-space that is accessable for storage of information.
It will be further limited by the resolution or modulation transfer function (MTF) of the holographic
medium. This limit is represented by a sphere centered on the origin whose radius is equal to the

96FR1122 Final Report 14

9621-00-048

\ SPATIAL FREQUENCY LIMIT
DUE TO MATERIAL MTF
VOLUME OF POSSIBLE

GRATING K-VECTORS:

B ACCESSIBLE
] NOTACCESSIBLE

Figure 5. K-space construction of grating k-vectors accessable using recording
geometry of Figure 2.

largest spatial frequency that can be resolved by the medium. The volume of the accessable region
depends on such geometrical factors as the focal lengths of the optics and the spacing of the neurons
on the SLMs.

The grating wavevector Kg has an uncertainty volume associated with it due to the finite physical
size of the hologram and the nonzero size of the SLM pixels. Dividing the accessible volume of
k-space by the volume of the uncertainty volume results in the maximum theoretical number of
resolvable gratings which can be stored in the photorefractive crystal. Without going into details
here it can be shown that the storage capacity is limited by two upper bounds due to the hologram
and neuron dimensions:

' 3/ 13 :

d,

No.of connections o< {J;/ /p;;} o< N’ (10)
holo

96FR1122 Final Report 15

where Vpolo is the hologram volume, f is the lens focal length, and dpixe] is the SLM pixel diameter.
It was assumed in the calculations that led to the above result that the hologram MTF limit is high
enough to be ignored. For an active crystal volume of a few cubic mm and reasonable optical
parameters the values of the two upper bounds range from 1010 to 1012 gratings. This is sufficient to
form a fully interconnected network of 105 to 106 neurons. Moreover, each grating can be read out
or updated in parallel without the time multiplexing, data contention, or bottleneck problems com-
mon in electronic architectures. As of this writing, up to 5000 high quality images consisting of
70,000 pixels each have been stored in a single photorefractive crystal.25 This corresponds to a
demonstrated storage capacity of 4 x 108 connection weights, which is still well below the above
estimates of the achievable storage capacity.

The learning phase of neural network models involves many parallel weight adjustments in
response to an internally or externally generated error signal. In holographic optical neural networks
this function is performed through the superposition of many exposures of the photorefractive crystal
in which the strengths of individual gratings are strengthened or weakened. Ideally, the holographic
process should not distort the linear superposition of weight update vectors in order to faithfully
implement neural network models. Photorefractive crystals differ from recording-center-based holo-
graphic materials, such as film, in that gratings are recording by the optical redistribution of a fixed
amount of charge. Thus, as new gratings are written, old gratings are necessarily erased in a process
called weight decay. In the following we point out how weight decay can distort the neural network
learning rule if precautions are not taken. In addition, we show that weight decay also reduces the
magnitudes of weight update values as the number of training exposures increases, which will ulti-
mately limit the number of exposures that can be recorded.

If we assume a simplified approximation for the photorefractive equations developed by
Kukhtarev et al.,26 in the absence of an applied field, the time dependence of the space charge field
E;j written by two plane waves with amplitudes Aj and A; can be expressed by

JE I, + iE AA;

—-_0F

a7 1 (D

where i =+/-1, Ip=Z; IAji2 is the total optical intensity, and 71 and Eg are material constants. The
space-charge field grating, Ejj, which arises from the diffusion of optically-excited charges away
from regions of high light intensity, represents the holographic interconnection between optical
beams Aj and A;. Due to the diffusion process, the space-charge grating is shifted by 90 °relative to
the optical grating. It is important to appreciate that a set of connections between many beams can
be formed in parallel, each representing an independent connection weight.

Let us rewrite Eq. 11 using neural network terminology. Each weight wj; connecting neurons i
and j is then described by an equation of the form

Doy Y ©a2
a g (12)

96FR1122 Final Report A 16

where nij=iEscAiAj*/1:1 is the updating term proportional to the product of the amplitudes of writing
beams i and j. The time constant T is equal to T1/Ip, it decreases proportionally as the total light

intensity increases.
The solution to the above differential equation has a simple exponential form:

w, =1,7+(w) — n,.jr)e"/ i (13)

where wOij is the initial or starting value of the weight. The saturation or steady-state weight value
for t>>7 is given by

sat

wi' =n,T
= lEscAlA; /IO

The steady-state weight is normalized by the total light intensity, its value is determined by the rela-
tive modulation depth of the optical grating. In photorefractive materials, higher optical powers
speed up the time response but do not change the final diffraction efficiency. For exposure times
short compared to T, Eq. 12 yields a simple expression for the change in wjj caused by a short expo-

(14)

sure At:

0
Aw, = wy—w) =, - L |A 15
Wy =Wy =Wy =\ Ty~ A (15)

Almost all neural network models use Hebbian learning rules for which Awj; is proportional to nj;.
From the above equation we can see that weight modification is slightly different in holographic neu-
ral networks. The Hebbian change in wjj, njjAt, is modified by the additional term -(wOij/‘c)At which
represents the effects of weight decay. The relative influence of the weight decay term is smaller for
smaller weight values. Let us now explore how weight decay affects photorefractive neural
networks.

First, define a weight vector wj as the set of weights which funnel signals into neuron i. If 1;=0
(Aj = 0) for a particular weight vector, then we have pure weight decay and the weight vector’s
magnitude is reduced but not its orientation. This is due to the change in each weight being propor-
tional to the weight value. The orientation of a weight vector is, however, also affected if n;; is
nonzero (e.g. both Aj and A; are nonzero). The relative effects of weight decay on learning are smail
for small weights which is normally the case during the initial stages of learning. The decay term
can distort gradient descent neural network models such as backpropagation which are sensitive to
both the orientation and magnitude of Aw;. Other neural networks, such as the Perceptron, are rela-
tively insensitive to weight decay. As previously mentioned, weight decay can be reduced by using
small weight values, which corresponds to low diffraction efficiency holograms. On the other hand,
as mentioned in Section 2.2, weight decay can also be useful by improving the generalization per-
formance of the network.

We will now show that if the individual exposures are short enough, the final weight is simply
proportional to the linear average of the update values. This recdrding method is known as incre-

96FR1122 Final Report 17

mental recording?’ as opposed to scheduled recording?8 where the update values are equalized by
using different exposure times for each hologram. Incremental recording is more suited to neural
network models because the total number of exposures does not need to be known before learning

can commence.
Using the simple exponential exposure model introduced above, it can be shown that after a

sequence of N exposures, each of which lasts T seconds, the final weight value is given by
N-1
wy=7 (1-e7")Y n,_ e (16)
p=0

where in the interest of clarity the connection indices i and j have been suppressed and the subscripts
are now exposure indices. In order to minimize distortions due to photorefractive weight decay, wn
should be forced to be proportional to 1, averaged over the N exemplars. This occurs if the individ-

ual exemplar exposure times are short compared to T:

wNz(l—e”NT/')r_m' for T<<t (17)

where
_ 1 &
n——A;Zm

n=1
If the number of exposures is large then

Wy = MT for N>>uT (18)

Thus under these conditions the weight is simply proportional to the linear average of the update
values. The diffraction efficiency, which is proportional to lwnI2, decreases as 1/N2. This is differ
ent from conventional neural network models in which the final weight value is given by a simple
sum of update values, not averaged over the total number of updates. In photorefractive neural net-
works, the absolute value of each weight update decreases as the total number of exposures
increases. Eventually, for large numbers of exposures, each weight update will become smaller than
the background noise. Thus, weight decay will limit the total number of exposures that can be
recorded in a photorefractive crystal to a finite value which is dependent on the dynamic range of the
holographic gratings. Calculating this limiting value requires formulation of a noise model which is
beyond the scope of this chapter. However, recent experimental measurements indicate that the
dynamic range of photorefractive gratings exceeds 100 db, or a factor of 1010 in diffracted light
intensity.29 This measured value was limited by detector noise. Theoretical calculations result in an
upper bound of 140 db for the grating dynamic range.30 Since the diffraction efficiency decreases as
1/N2, the maximum number of exposures that could be stored would be limited to less than 107.

It is informative to contrast the implications of Eq. 12 for holographic data storage and neural
network applications. If each exposure creates an independent hologram without gratings common
to other holograms, as is usually the case for holographic data storage where multiple data pages are
stored in the same crystal volume using angle or wavelength multiplexing, then each weight has only

96FR1122 Final Report 18

one nonzero T associated with it. For independent superimposed holograms, the intensity diffrac-

2
2 _[N7k
independent - (N] (19)

where m is the nonzero value of 1,. Each individual hologram’s intensity diffraction efficiency is
decreased by the square of the total number of holograms.

In photorefractive neural networks on the other hand, the superimposed holograms are not inde-
pendent: many gratings are common to multiple weight updates. In a neural network, many if not
most of the weights are continually adjusted during the learning procedure. Thus each grating may
be updated many times as opposed to once if the holograms were independent. The effects of grating
erasure are therefore less than would be the case for independent holograms. Instead of 17 being
equal to the one nonzero My, divided by N, for non-independent holograms it is equal to the sum of
many nonzero Mp’s divided by N. For example, assume that the weight wq is updated by the
nonzero value M in a fraction € of the N exposures. Then

tion efficiency, Iwgl?, is then given by

|w

Q

< N
>0, == (20)
and the intensity diffraction efficiency of the neural network weight is given by

IWQ Eependem ~(ents) 1)

which is independent of N. The ratio of the weights for the dependent and independent hologram

cases is given by
IWQ Eependent

2
—— T =(eN) 22)
o

independent

The quantity € is a measure of the degree of independence or statistical correlation of the holo-
grams. It will also be related to the rank of the final weight matrix. If e=1/N then the holograms are
independent and the intensity diffraction efficiency of the weight will decrease as 1/N2. This case
corresponds to each weight vector adjustment being statistically uncorrelated with the previous one
and can result in a full-rank weight matrix if the number of exposures is at least as large as the num-
ber of neurons in either of the layers. At the other extreme, e=1 corresponds to the case in which the
weight matrix is adjusted by the same outer-product throughout the exposure process, e.g. effectively
only one hologram is recorded which utilizes the entire available dynamic range of the photorefrac-
tive gratings. The rank of the weight matrix is then equal to 1. The € value for neural network mod-
els will lie between these two extremes. |

96FR1122 Final Report 19

We can conclude that the number of weight updates which can be stored in a photorefractive
crystal during training of an optical neural network can be much larger than the number of indepen-
dent holograms which can be stored. Quantitative estimates of € will require detailed numerical sim-
ulations of optical neural networks and will vary depending on the neural network model and the
problemn domain.

3.2 Limitations of Conventional Holographic Weight Storage

A variety of mechanisms limit the practical holographic storage capacity of photorefractive
crystals to values below the theoretical limit. Noise sources were discussed in the previous section.
In this section we discuss limitations due to Bragg degeneracy and beam coupling, factors which can
be alleviated using multiple-grating holography.

One of the most important impediments to holographic neural networks is crosstalk which arises
from an effect known as “Bragg degeneracy”. The Bragg condition states that the angle of incidence
of a light beam relative to a volume grating must match one of the original writing beams in order to
form an optical connection. However, even if the angular selectivity is high, crosstalk can still occur.
Given a particular grating, it is possible for many light beams to satisfy the Bragg condition for that
grating, in addition to the beams which originally wrote the grating. As shown in the light beam k-
space diagram of Figure 6 (also known as an Ewald sphere diagram), a set of beam pairs which
define the surfaces of two end-to-end cones all form the same angle with respect to the grating. All
of the neuron pairs defined by the cones are connected by that grating even though it was written by
only one grating pair. Therefore, a large set of beams other than the original writing beam can scat-
ter constructively from the grating, forming erroneous reconstructions and crosstalk.

9229-06-018R1

THESE (Ko Kp)
' PAIRS CANNOT BE

USED BECAUSE OF

CROSSTALK Kg +Kg =Ko

Figure 6. K-space construction of cross-talk resulting from Bragg degeneracy.

96FR1122 Final Report 20

922906005

An experimental demonstration of Bragg
degeneracy is shown in Figure 7. We recorded a 3
hologram in a c-cut BaTiO3 crystal using a laser diode
light source with a wavelength of 830 nm. (The
wavelength and crystal geometry were chosen for low * .
two-wave mixing gain in order to eliminate beam
fanning which, as will be shown later in this report,
can be used to eliminate Bragg degeneracy.) The
experimental configuration of Figure 4 was used.
During recording the object plane consisted of a
regular rectangular grid pattern and the reference seeacse
plane was a uniformly filled rectangle (all pixels on).
When the hologram was read out using the uniform
reference, the reconstructed object was smeared in the
vertical direction. No horizontal smearing can be
observed. This can be easily explained by considering
the k-space diagram of Figure 8. In Figure 8(a) it can
be seen that the grating k-vector created by beams R1
and O1 also connects all beams above and below R1
in the R plane. These beams, such as, for example,
R2, reconstruct extraneous beams such as O2 which
appear above and below the original beam O1. This
results in vertical smearing. In Figure 8(b) we see that [
horizontally displaced beams are not connected by the
same grating k-vector, therefore horizontal smearing
is much less. Note that Bragg degeneracy cannot be Figure 7. Experimental demonstration of
eliminated by simply phase aberrating the reference Bragg degeneracy using infrared hologram
beam since the above construction would still hold for Feécorded in c-cut BaTiOg. Vertical smearing is
the individual plane wave components. symptomatic of Bragg degeneracy.

Possible approaches for avoiding Bragg degeneracy are subsampling of the SLMs and spatial
multiplexing of holograms. In the subsampling approach, neurons are arranged in sparse nonredun-
dant patterns on the SLMs, and output planes are similarly sparsely sampled; thus although false
reconstructions still occur, they occur at unused positions and do not contribute to the output. The
special patterns can consist of so-called “fractal” lattices or other sparse patterns.31 If the SLMs are
capable of displaying N X N neurons, then this approach can implement a total of N3/2 neurons and
N3 weights. This has the pleasing quality that the storage capacity of the crystal and the number of
weights required to fully interconnect the neurons on the sampled SLMs have the same dimensional
scaling. In many practical cases, however, it also has the drawback that the storage capacity may be
limited by the number of neurons that can be displayed in sparse patterns on the SLM, rather than by
the potentially large capacity of the crystal. As discussed above, the storage capacity of a 1 ¢cm3

ORIGINAL OBJECT

1 .,5_-';
i ‘-,
; 'v N
i : 4% 5
28
ﬁ Eibi
H ! ’
&

L

% ¥

445

v

'

I

96FR1122 Final Report 21

9621-00-049

Ka
02~}——Ff=R?
LN
1 R
o Ko g o
\/ R2
01 _/ R1
(a) (b)
VERTICAL CROSSTALK HORIZONTAL CROSSTALK
(FRONT VIEW) (TOP VIEW)

Figure 8. K-space construction showing origin of vertical smearing effect in Bragg
degeneracy. Vertically-displaced pairs of reference-object points are all connected by the
same grating k-vector.

crystal should be sufficient to store the interconnections for a N X N array of neurons where N=500,
which matches the capabilities of present-day SLMs. However, because of the subsampling, only
N3/2 neurons can be implemented even though the SLM is capable of displaying N2 neurons. Since
N=500, the neuron and weight storage capacities are reduced by factors of 22 and 500, respectively,
from the theoretical maximums. The light efficiency is also lowered because some of the light is
diffracted to unused pixels as a result of the Bragg degeneracy.

The spatial multiplexing approach avoids the Bragg degeneracy problem by physically dividing
the crystal into separate volumes for each weight.32 However, this reduces the coupling efficiency of
gratings, reduces parallelism because sequential exposures must be used, and increases hardware
complexity.

A second major source of distortion in holograms is energy transfer between Bragg-matched
beams via two-wave mixing. This occurs because when an input beam is Bragg-matched to a grat-
ing, the reconstructed beam is automatically Bragg-matched. This beam can then itself read out the
same grating and reconstruct the input beam. If the gain-length product of the grating is sufficiently
high, energy transfer or beam coupling can occur periodically between the two beams, as Kogelnik
showed using coupled mode analysis. Several workers have analyzed the effects of beam coupling
on holographic image quality using various methods.33:34 They found that distortion increases
rapidly as the diffraction efficiency increases.

3.3 Multiple-grating Holography

We have developed a holographic recording technique called multiple grating holography
(MGH) which greatly reduces the distortions due to Bragg degeneracy. The essence of the MGH
idea is to use a set of angularly and spatially multiplexed gratings to store each weight rather than a
single grating. By forcing a light beam to match the Bragg condition at each of a cascaded series of

96FR1122 Final Report . 22

spatially and angularly distributed gratings (Figure
9), crosstalk due to Bragg degeneracy is greatly
reduced. The k-space construction of Figure 10
shows that two gratings in series will connect only
a single input/output pair of beams via an
intermediary diffracted beam. All other beam
triplets (input, intermediary, and output beams)
will not match the Bragg conditions at both
gratings because the intermediate diffracted beam
will not lie on the Bragg degeneracy cone of the
second grating. An undesired beam on the Bragg
degeneracy cone of one grating is therefore
rejected by the remaining gratings. (This allows
the neurons to be arranged in arbitrary patterns on
the SLM, increasing the storage capacity and light
efficiency (since all pixels can be used) as well as
the computational throughput. If the three beams
are all in the same plane, then the minimum
allowable pixel separation is greater in the vertical
direction than horizontally due to the tangency of
the two Bragg cones for co-planar beams.35
However, deviations from co-planarity as small as
the Bragg width are sufficient to eliminate the
tangency of the Bragg cones. Our experiments
show that pixel separations typical of SLMs are
sufficient to eliminate crosstalk in both directions.

Two techniques for generating such multiple-
grating connection weights in photorefractive
materials have been investigated: self- and
mutually-pumped phase conjugate mirrors
(PCM)36-39 and forward-scattering beam
fanning.40 Although effective in reducing
crosstalk due to Bragg degeneracy, the PCM
method results in very strong inter-hologram
crosstalk due to the hologram-sharing effect.4!
This led to the beam fanning method which also

SINGLE-GRATING WEIGHTED
CONNECTIONBETWEEN i AND j
(SUFFERS FROM BRAGG DEGENERACY)

i MULTIPLE-GRATING WEIGHTED
CONNECTION BETWEENBEAMS i AND j
(NO BRAGG DEGENERACY)

Figure 9. Optical connections made by scatter-
ing from multiple cascaded gratings reduce
cross-talk due to Bragg degeneracy and allow
full utilization of input and output planes.

eliminates Bragg degeneracy but does not suffer from hologram sharing.

“Beam fanning” is a well-known effect in high gain photorefractive crystals in which an input
beam is initially scattered by small inhomogeneities in the crystal, resulting in low amplitude scat-
tered optical noise.42 The noise beams then interfere with the original input beam and write gratings.

96FR1122 Final Report 23

Scattering of the input beam by these gratings

selectively amplifies some of the noise beams by 922008-011
the process of energy transfer in photorefractive
two-wave mixing. The amplified beams then
write new gratings and the process cascades.
Which beams are amplified most is determined by
the electrooptic tensor of the crystal and the
orientation of the input beam. The net effect is
that the input beam literally fans in the crystal as it
writes a set of spatially and angularly distributed
gratings.

As shown in Figure 11, this fanned light can
be used as a reference beam when it is interfered
with a second, unfanned object beam to form a
holographic connection which suffers neither from

Bragg degeneracy (because multiple cascaded
gratings store each connection) nor from hologram Figure 10. K-space construction for satisfaction
of Bragg conditions at two gratings

sharing (because the conjugate beam is not used gjmyitaneously. Only one triplet of light beams
for readout). An unfanned object beam is used satisfy the Bragg conditions of both gratings.

because object beam fanning would degrade the

quality of the reconstructed object image. Fanning can be controlled so that the reference beam fans
and the object beam doesn’t by adjusting the orientation of the beams relative to the crystal. The
fanning process generates high gain-length product “fanning gratings” which divide each reference
beam into a set of beams at different orientations and locations. During recording the object beams
form a set of “signal gratings” in which the connection weights are stored. Both the signal and
fanning gratings are angularly and spatially multiplexed. Upon readout each reference beam must
match the Bragg condition at a multitude of fanning gratings, which breaks the Bragg degeneracy. In
addition, the beamlets reconstructed by the signal gratings are all in phase and sum coherently, hence
the aggregate diffraction efficiency can be high even though the diffraction efficiency of any
individual signal grating is small. In addition, the low gain-length product of the individual signal
gratings greatly reduces distortions due to beam coupling.

Recordings of holograms in a fanning crystal of BaTiO3 do not exhibit observable Bragg degen-
eracy, hologram-sharing crosstalk, or distortions due to beam coupling. An example of holographic
recording using an arbitrary 2-D gray-scale reference image is shown in Figure 12. The object and
reference both consisted of combinations of Pentagon and woman images displayed on a LCTV with
30,000 gray-scale pixels (90,000 pixels if the individual red, green, and blue pixels of the color
LCTYV are counted). The original object (showing the system’s optical quality) and reconstructed
hologram are shown in Figures 12(b) and (c). Note that only 50% of the original reference was used
in reading out the hologram. The reconstructed image is virtually identical to the original. Upon

96FR1122 Final Report 24

9621-00-050

RECONSTRUCTED

OBJECT BEAM
FANNING
GRATINGS

"SIGNAL

REFERENCE 3 GRATINGS

BEAM

Figure 11. Recording of connection using fanned reference beam.

magnification of the reconstructed hologram, each of the 45,000 LCTV pixels in the original object
was clearly visible.

We also performed experiments to measure the holographic fan-out. In one experiment a uni-
form (all pixels on) reference was used to record the hologram. During readout an opaque screen
with an adjustable small round aperture was translated in front of the reference plane, allowing us to
measure the weight vector connected to that portion of the reference. In this experiment the aperture
area was less than 1% that of the reference, corresponding to a fanout of over 100. (Measurements
of larger fanouts were limited by the sensitivity of our CCD camera.) The entire object was recon-
structed when read out with 1% of the reference, demonstrating global connectivity.

We also measured the time required to write holograms to saturation using fanned reference
beams. The results are shown in Figure 13 for a crystal of BaTiO3 which was cut at 45° to the
c-axis. This crystallographic orientation maximizes the effective electrooptic coefficient.43 We used
two slotted wheels on a common rotating shaft to periodically switch off the object beam and
unblock a photodiode which measured the diffracted light. In this way we could measure the buildup
in diffraction efficiency as the hologram was being written. (This accounts for the pulsed nature of
the oscillioscope trace in Figure 13.) In this case the wavelength was in the green (514 nm) and the
total optical power incident on the crystal was 17.5 mw. The time required to write to saturation was
25 msec. Since weights are typically adjusted by small amounts during the learning phase of neural
networks, all the weights connecting two neuron layers can be incrementally adjusted in less than
1 msec. This would correspond to learning rates of greater than 10!! connection updates per sec if
each layer contained 104 neurons. Since the photorefractive time constant is roughly inversely pro-
portional to the optical power, the update rate can be further increased by raising the laser power.

A demonstration of recording superimposed holograms using fanned reference beams is illus-
trated in Figure 14. In this case the objects were rotated versions of a gray-scale woman image and
the references were orthogonal grid patterns. As shown in Figures 14(b) and (c), each of the super-
imposed holograms could be read out with very little crosstalk between holograms and with approx-
imately equal diffraction efficiencies.

96FR1122 . Final Report 25

Improvements in packaging size and cost would
be obtained if a laser diode light source could be used.
Currently available BaTiO3 is less sensitive at the
infrared laser diode wavelengths and the
photorefractive gain is less. Nevertheless, we were
successful in demonstrating multiple-grating
holography in 45°-cut BaTiO3 using a laser diode
light source operating at 830 nm. This crystallo-
graphic orientation maximizes the effective
electrooptic coefficient, which is required for
maximum beam fanning. We used a 100 mw single
mode laser diode. The total optical power at the
crystal was 31 mw. As shown in Figure 15(a-c),
excellent holographic image quality without Bragg
smearing can be obtained in the near-infrared in
BaTiO3 using multiple-grating holography. Low
signal-to-noise ratio images could be recorded with
exposure times as short as 67 msec, as shown in
Figure 15(d). Nevertheless, due to the much reduced
sensitivity of BaTiO3 at 830 nm, the time constant for
hologram writing was much longer than at 514 nm.
We have measured a time to saturation of 10 sec for
an incident power of 45 mw at 830 nm. Thus more
work is needed to improve the infrared sensitivity of
the recording medium for use with laser diodes.
Alternatively, compact solid state lasers emitting in
the green could be used.44

9621-00-069

(©)

OBJECT RECONSTRUCTED USING
50% OF ORIGINAL REFERENCE

Figure 12. Experimental demonstration of
recorded image quality using fanned
reference- beam and 2-D non-subsampled
reference. (a) Object and reference used for
recording, (b) Original object for comparison, (c)
Hologram of object reconstructed using 50% of
original gray-scale reference.

96FR1122 Final Report 26

9621-00-072

00008 500.000WM HIGH

Figure 13. Holographic time response of 45°-cut BaTiO3 for writing wavelength of 514 nm.

9621-00-073

(b)

Figure 14. Demonstration of superimposed holograms using fanned reference beams.

96FR1122 Final Report . 27

9621-00-064.

(d)

Figure 15. Demonstration of fanned-reference holography in BaTiO3 using laser diode
light source with a wavelength equal to 830 nm. (a) Original object as seen through the
crystal, (b) Hologram of object after 20 sec exposure, (¢) Hologram after 0.5 sec exposure,
(d) Hologram after 0.067 sec exposure.

96FR1122 Final Report

28

4. LASER-DIODE-BASED
HOLOGRAPHIC NEUROCOMPUTER

Neurocomputers should be characterized by, first, large numbers of neurons and weights; second,
software mapping of a variety of neural network algorithms; third, co-processor-type interfacing to a
host computer; and fourth, hardware simplicity for low cost and practical packaging. In this section
we describe an experimental optical neurocomputer which serves as a testbed for some ideas which
we hope contribute to achieving these goals. A variety of neural networks, including Perceptron and
backpropagation networks, have been successfully demonstrated on this system.

4.1 Experimental Set-up and Packaging Concepts

A diagram of the SPONN (stimulated photorefractive optical neural network) neurocomputer is
shown in Figure 16. It is a hybrid optical/electronic system: although the weighted interconnections
of the neural network are implemented holographically, thus taking advantage of the parallelism and
three-dimensional connectivity of optics, the neuron nonlinearities and data input/output are imple-
mented digitally. The reference and object input planes containing the optical neurons are displayed
side by side on the spatial light modulator (SLM) using two Variable Frame Grabber (VFG) image
processing cards from Imaging Technology in the host computer. One VFG board is dedicated to
displaying neuron outputs on the SLM while the other is used to grab video from the CCD detector
which contains the summed inputs to the neurons. Nonlinear point operations such as the neuron
sigmoidal transform are implemented in the host computer (a 66 MHz 486 PC). The SLM is a
1" x 1" VGA-resolution (640 x 480 pixels) active-matrix liquid crystal display panel from Kopin
Corp. The input planes modulate the reference and object light beams which are directed into the
photorefractive crystal where holograms interconnecting the two input planes are written. The light
source is a 200 mw single-mode laser diode from SpectroDiode Labs operating at 837 nm. The
photorefractive crystal is rhodium-doped BaTiO; grown at Hughes Research Labs which has been
shown to have enhanced sensitivity at laser-diode wavelengths.4> This generation of the SPONN
system uses off-the-shelf optical components and was not optimized for minimum volume. It
occupies an optical breadboard measuring 2' X 2'.

We have done detailed optical designs which show that the same components could be mounted
on a double-sided breadboard measuring 1' X 1', as shown in Figure 17. In this concept, a miniatur-
ized floating breadboard will be utilized to construct the neural-net. Figure 17 illustrates this design
approach schematically. To keep the system compact, the optical path is folded so that both the laser
source-beam collimating assembly and the image reconstruction apparatus are mounted on the back-
side of the breadboard. The processing unit composed of the SLM, the object and reference paths,
and the nonlinear crystal are all mounted on the opposite side of the breadboard. The breadboard it-
self is hung and floated in a 3-D cubic frame. The floating mechanism is established by holding the
breadboard with two-way shock absorber posts at the four comers. This arrangement would isolate
the breadboard unit from the external interference so that stability can be achieved. Based on our

96FR1122 Final Report 29

Laser Diode-Based .

Optical Neural Network g';:'l,g;':l:i':"
(2' x 2' Optical Breadboard) Camera
L3f=8cm

CCD Camera
for monitoring | e
LD fringe contrast

LC Variable
Attenuator 2

L1
Reference

eam

LC Phase
Shift Cells

Gian-Thompson
Prism Polarizer

____________ 2

IR-Sensitive

BaTiO3 Hologram
M1 (8x3x5 mm)
Active-Matrix LC SLM \
(1°x1* Active Aperture))
LC Variable
Attenuator 1

(b)

Figure 16. (a) Layout of laser-diode-based optical neurocomputer, (b) Photograph of
laser diode based optical neurcomputer on 2'x2' optical breadboard.

96FR1122 Final Report

9621-00-056

(a) TOP VIEW

(b) BOTTOM VIEW

Figure 17. Packaging concept for optical neurocomputer using off-
the-shelf components. The neurocomputer occupies a 1'x1' two-sided
optical breadboard mounted on shock absorbers. (a) Top view, (b)
Bottom view.

96FR1122

Final Report

31

experience in opto-mechanical engineering, the stability of mounting and adjusting hardware will be
the key to the success of this approach. It is recommended that special mounting fixtures, such as the
gimbal type mounts, with fine tuning and lockable features should be considered. This packaging
concept is aimed at building a compact neural network at a brassboard level allowing limited modifi-
cation or alignment work to be accommodated. It is based on the principle of isolating the system
from the environment. Use of a smaller SLM, such as the display panels now available for helmet-
mounted displays, would allow shorter focal length optics and further reduce the size of the system.

The operation of the neurocomputer consists of separate hologram writing and readout phases. In
the hologram writing phase, the reference beam interferes with the object beam in the crystal, form-
ing the cascaded-grating connection hologram. In the readout phase, the reference beam reconstructs
the object beam, which is detected by a variable frame time CCD camera. The CCD output is con-
verted into digital form, allowing the neuron sigmoidal nonlinearity to be implemented digitally in
the host computer. Dual image processing cards in the PC host are used to process the input and
output planes. By manipulating the input plane using one of the image processing cards, various
single and multiple-layer neural network models can be implemented on the same optical hardware.
Liquid crystal cells are used to vary the amplitude and relative phase of the reference and object
beams. Phase shifting is used in the balanced coherent detection method discussed below for repre-
senting bipolar neurons and weights.

4.2 Bipolar Weight Representation

Most neural network models require weights and neuron outputs to assume both positive and
negative values. Such bipolar quantities are necessary even if the neuron response function saturates
at 1 and O in order to be able to both rectify wrong responses and reinforce correct responses without
saturating the outputs. In addition, some neural networks, such as backpropagation, require the
detection of a bipolar error signal. Therefore means must be provided in an ONN for bipolar inputs
and outputs. Holographic ONNs can use coherent or incoherent methods for representing bipolar
inputs and outputs.

In coherent approaches direct phase modulation of light is used to shift the phase of gratings
during writing. Upon reading out the hologram, the phase of diffracted light beams is measured by
mixing with a reference beam and using interferometric detection. Interferometric detection has
potential benefits in terms of increased dynamic range, but it also has many practical difficulties.
The phase shifting of the input must be done with great uniformity across the entire SLM input.
(Although this can also be accomplished using Stokes’ principle4 or phase modulating devices and
exposing the positive and negative components separately.) More problematic is the interferometic
detection at the output detector array. It is very difficult to maintain phase uniformity across the
entire output detector array. Increased vibration sensitivity is also a problem. In addition, many
presently available SLMs have an amplitude-dependent phase response which makes independent
control of phase and amplitude impossible without using an additional compensating phase-only
SLM, which would greatly increase alignment difficulties and system complexity.

96FR1122 Final Report 32

In order to avoid these problems, in our first SPONN system we represented bipolar inputs,
weights, and outputs incoherently using spatial multiplexing. A bipolar input y; (which could be an
input from neuron j or an error signal) is divided into two nonnegative quantities yj* and yj- where

yj+=yj andyj=0 if yj>=0

yj*t=0 and yj=lyjl if yj<0 (23)

These operations are performed electronically in the host computer. yj* and yj- are then written to
two spatially-separated SLM pixels in the reference half of the optical input plane. For the writing or
weight adjustment phase of a neural network algorithm, two similar nonnegative quantities are writ-
ten to two SLM pixels in the object section of the input plane, representing a bipolar error signal in
neuron i. The crystal is then exposed with the object and reference beams, forming four intermediate
weights wij+, wijt, wijt, and w;;— which encode a bipolar effective weight connecting neurons i
and j. wij** increases if both object and reference are positive, wij*- increases if object is positive
and reference is negative, and so on for wj;* and w;j™.

The bipolar algorithm for the readout phase is illustrated in Figure 18. The effective weight is
decoded by reading out twice, once with the input and again with its negative and then subtracting
the two outputs. Input y; is again split into positive and negative parts which read out the weights in
the hologram. Square-law detection of the diffracted light beams is performed at two CCD pixels,
forming the intermediate terms

"=y + 2wy,
J J (24)

=Yy + W,y
J J

(In our optical system many CCD pixels are actually used for each output so that spatial averag-
ing as well as temporal averaging can be used to reduce noise.) The square-root of each of these
CCD outputs is formed before subtracting them. The final output after subtracting the two readouts
is

0”t1=(‘/}:‘ \/I) - (*/dT-\/a)
=3 (wi +wy - wi -wy) Y-) (25)

=Wy
j

+INPUT —INPUT

96FR1122 Final Report 33

BIPOLAR OUT,

*

POS. PART o NEG. PART

ouT / V\ ouT

LUT \I_

CCD PIXELS

SLM PIXELS

NEG. PART

- OPTICS BIPOLAR INPUT
[_]ELECTRONICS

Figure 18. Algorithm for bipolar representation of weights and neuron values.

which represents a true bipolar output with bipolar weights and inputs. The electronic portions of the
algorithm are not bottlenecks. The square-roots are performed at video rates on the entire video
frame using a lookup table. Note that this method relies on the fact that all optical terms have the
same phase, namely that of the object beam at the respective CCD pixel.

We also place yj'*' and y; on a bias A so that the actual optical inputs for each of the two pixels
which comprise a neuron are A+yj* and A-y;j~. This ensures that the overall intensity level in the
photorefractive crystal, and hence the photorefractive time constant, is independent of the input val-
ues. The addition of a bias does not change the above results.

In our earlier SPONN system described above we represented bipolar neurons and weights by
using separate pixels for positive and negative neuron values and taking the difference to form the
final output. We did not use the “dual-rail” representation scheme in the second SPONN system
because we have found that bias terms build up in the positive and negative rails. In theory, these
terms cancel in the final result. In practice, however, the dual-rail representation increases the

96FR1122 Final Report 34

dynamic range requirements of the system. Small output values must often be calculated by
subtracting two almost equal large numbers, resulting in poor accuracy. We have observed this
effect both experimentally and using numerical simulations. In order to eliminate this effect, we
have switched to a balanced coherent detection technique for representing bipolar neurons and

weights.
The optical signal read out from the hologram is superimposed on the CCD detector with a con-

stant optical bias which is allowed to pass through the hologram on the object beam from the SLM.
Let b represent the bias amplitude, a the signal amplitude, and ¢ the phase shift between b and a
induced by the LC cell in the reference beam. The CCD output as a function of ¢ is then

1(p)=|b+ae®[=b* +|af +2b Re(ac™) (26)

where we have defined the phase of b as zero. Note that the output contains both constant and sig-
nal-dependent bias terms. In the balanced coherent detection method, the hologram is read out twice
with ¢ equal to 0 and w. The outputs are stored

and subtracted to give the final output: 00— T T T T T T T

9621-00058
T 1]

150

V=1I(p=x)-1(¢=0)=4bRe(a) 27) w100

' a 50

Note that V is bipolar in a and is bias-free. In >
addition, positive and negative weights are stored 5 50
by recording phase-shifted gratings in the %-100

photorefractive crystal using the LC phase-shifter ~ -150

cell in the reference beam. (We were also able to -200 11 21 31 41 51 61 71 81 91 111
modify the phase by modulating the laser diode EXP?SURE
current, but we found this resulted in greater 150 [
sensitivity to vibrations.) This eliminates the W 100
weight bias buildup problem in the dual-rail J g
approach. Experimental results for writing and = o
reading positive and negative weights in a BaTiO3 E -50
crystal using the balanced coherent detection = -100
method are shown in Figure 19. 150 == 0 115 20 25 30 25
READOUT CYCLE
(b)

Figure 19. (a) Balanced coherent-detection
readout of positive and negative weight values in
a BaTiO3 crystal as they are being written. (b)
Readout (using balanced coherent-detection) of
positive and negative weights stored in a BaTiO3
crystal. The phase of the readout beam was
periodically shifted by x.

96FR1122 Final Report 35

5. HOLOGRAPHIC NEUROCOMPUTER
EXPERIMENTAL RESULTS

The current performance is approximately 2 x 107 weights processed at 108 weights per second.
The processing rate can be increased most easily by increasing the electronic I/O bandwidth. In the
following sections we describe results for specific neural network models which were all pro-
grammed on the same optical neurocomputer described above without any hardware adjustments.

5.1 Perceptron
The Perceptron was one of the first neural networks to be developed.4” In the most commonly

implemented form it consists of a single layer of weights connecting a field of input neurons with a
single output neuron. (Some of the original Perceptron networks contained a “preprocessing” layer
with fixed weights which were not adjusted during learning.) A single output neuron can
dichotomize or separate the vector space of input patterns into two classes. The weight values
together with the threshold value of the output neuron determine a separating hyperplane for pattern
vectors. Therefore it can only dichotomize classes which are linearly separable. The Perceptron is
appealing as a first test of neural hardware because of its simplicity and the fact that a learning rule
with guaranteed convergence is known (provided a solution can be represented in the first place). Its
main weakness is that as a single-layer network it is limited to linearly-separable solutions and there-
fore cannot solve many problems of practical interest.

y:h(zwjxj —e) 28)
J .

where w is the weight vector connecting the input neurons x with the output neuron, 0 is the output
neuron threshold value, and h(z) is a hard-threshold response function with outputs 1 or -1 for z>0
and z<=0, respectively. Input patterns are binary and normally assume values of 1 or 0. 6 can be

learned by setting one of the input neurons to 1, although in our experiments we set 6=0. The learn-
ing rule is simple and can be expressed in terms of the weight update vector as

Aw; =-n(y-D,)x 29)

j.c
where D, is the desired output for exemplar c. If the output is correct, no change is made. If y=1 but
D,=-1, a change proportional to the negative of the exemplar is made. Finally, if y=-1 but D=1, a
change proportional to the exemplar is made. A slight modification of this algorithm was made in

the optical implementation. A “forbidden zone” centered on zero was defined for neural outputs
before thresholding: if the value of Zw;x;-6 was within this zone then a correction to the weights was

made even if the thresholded network output was correct. This made the system more robust by
penalizing small weight values.

In our implementations of the Perceptron neural network, the R plane contained the pattern in the
input neuron layer Lo and the O plane contained the output neuron layer L1. We used both single

96FR1122 Final Report 36

|

and multiple output neurons. The latter case is equivalent to many Perceptrons operating in parallel
on the same input patterns but with different classification goals. In all of the experimental examples
described here the problem to be solved was the tranformation of a set of random binary exemplars
(2-D random patterns with pixel values of 1 and 0) into another set of random binary patterns.

The first Perceptron experiment had a single output neuron, the goal was to dichotomize a set of
random patterns into two classes. The results of this experiment is shown in Figure 20(a) which is a
plot of total error during learning versus epoch number. In this case the optical neural network
learned to dichotomize 96 random patterns after 29 epochs. Each pattern consisted of 1920 pixels
(60 x 32). Increasing the number of pixels tended to reduce the number of patterns that could be
learned although with 7680 pixels (120 x 64) the system could still learn 42 patterns. In order to test
the noise level in the system we attempted to classify two patterns into two classes. The patterns
were identical except for a prescribed number of differing pixels. We continued to reduce the num-
ber of differing pixels until the optical neural network could no longer distinguish them. The system
could separate patterns containing as few as 0.5%
differing pixels. The spatially-multiplexed inco-
herent method for representing bipolar
weights (see Figure 18) was used in Figure 20(a).
Results for Perceptron learning using the balanced
coherent detection method for representing bipolar
weights are shown in Figure 20(b).

We were also able to implement multiple-
output-neuron Perceptron networks. The
networks learned to perform a one-to-one
transformation of a given set of random binary
patterns (values 1 and O) into another set of
random patterns (values 1 and -1). The results of
one experiment are shown in Figure 21(a) in
which the input and output layers contained 1740
and 870 neurons, respectively. This network had
a total of 1.5 million weights. We then scaled the
network up to 10,260 neurons and 2 x 107
weights. The learning curve for this larger 0
network is also shown in Figure 21(b). The 5

9621 (0 060

0.5

0.4

TOTAL ERROR
° o
N [~}

e
-

e
o

EPOCH

(@)

lllllllllllllllllllllllﬁr-fkfa

1.0

0.5¢

TOTAL ERROR

10 15

EPOCH

20 25

processing rate was 2 X 107 connections updated
per second during learning. This rate was limited
by the PC host computer because we transfered
neuron values back and forth between the image
processor cards and host memory using the PC
bus.

(b)

Figure 20. (a) Optical Perceptron learning of 96
exemplar patterns with 1920 input neurons and
incoherent detection method. (b) Optical
Perceptron learning using balanced coherent
detection method.

96FR1122

Final Report

37

We also used this type of network in a
handwritten digit recognition application.
Exemplars were extracted from a database of
handwritten digits supplied by the U.S. Post
Office. Examples of the digits are shown in
Figure 22. The network, which consisted of 625
input neurons and 10 output neurons, was trained
to label inputs as one of the ten digits. The total
error during learning of 80 exemplars is also
shown in Figure 23. We did not expect good
performance because this network contains a
single layer of weights and the character
recognition problem is not linearly separable.
Even so, the network achieved an 92% correct
recognition rate on the training set and a 75%
correct recognition rate on 40 test digits it had not
seen before. Although less than required for
practical af)plications, this result demonstrated
generalization since the expected untrained
recognition rate is 10%.

5.2 Backprogation

Perceptrons are interesting as a first test of
neural hardware. However, the usefulness of
single-layer networks is limited to separable
problems. The addition of a hidden layer greatly
increases the power of a neural network. As
mentioned previously, it has been shown that a
network with a single hidden layer (input, hidden,
and output neuron layers with two layers of
weights) can approximate any function provided a
sufficient (but finite) number of neurons is
available. One of the most popular learning
algorithms in terms of applications is
backpropagation.#8:49 Backpropagation is a learn-
ing algorithm based on steepest descent of an error
surface defined by

e=33(%-p.)

(30)

9621-00-059

(2610 NEURONS)]

1 |
(@]
& i
o |
w 4
2]
(o] d
Lol -
"0 10 20 30 40 50
EPOCH
(@
¥ I i
- (10,260 NEURONS) |
& 4
I -
[|
i -
4 d
[-
(o} 4
- i
. 1 1 L
0 10 20 30 40 50
EPOCH
(b)
Figure 21. Multi-output-neuron single-layer

optical Perceptron learning of 4 random
input/output associations. (a) 1740 input neurons,
870 output neurons, and 1.5x106 weights, (b) 6840
input neurons, 3420 output neurons, and 2.3x107
weights. :

9621-00-061

2OYS L 787
L ISSET787
ASHSLTRT
23456787
AI¥YSC /X7
23
23
13
A

HELTRT
456789
4SEe7%7
DUYSLTRT
1234567279

A
4
!
1
§
1
1
}
}

C00CO0G0O00

Figure 22. Examples of handwritten digit
exemplars from the Post Office database used
for optical neural network learning.

96FR1122

Final Report

38

9621-00-063

0.8 I I T | |
0.6

0.4

TOTAL ERROR

0.2

0]] 1] I
0 5 10 15 20 25 30
EPOCH

Figure 23. Optical Perceptron learning curve for the handwritten digit
problem. The network consisted of 676 input neurons and 10 output neurons.
Eight examples of each of the ten digits for a total of 80 exemplars were used in
the learning phase. The network achieved a 75% correct classification rate on
40 test digits not used in the learning phase.

where E is the total error, Dj ¢ is the desired value for output neuron i given exemplar input ¢, and
y(™); ¢ is the actual output for exemplar c. The weight adjustment rule during learning is based on the

steepest descent rule:

oE

A @31)
M7

Aw,.(,’}) =-7

where the superscript (n) refers to the weight layer being updated. Assuming a two-layer network,
and without going into the details of the derivation here, the error gradient is given by the following
set of equations for the output layer (see the references for details):

(2) _((2) _) ((2)) (32)
gy)=fIF'O)]=0+y) (1-y)

and by these equations for the hidden layer:

JdE
— 6(1) y ©) ,
awl(li k

8D = g(3")e, | (33)
b = z 5Ow®

96FR1122 Final Report 39

where f(x)=(1-e-X)/(1+e"X) is the neuron sigmoidal response function for neuron values between -1
and 1.

One possible issue in the optical implementation of backpropagation is its sensitivity to the accu-
racy of representation of the functions () and g(). Due to inherent nonlinearities and nonuniformity
in present SLMs, it may not be possible to represent f() and g() in exactly the above form. We have
performed a sries of computer simulations of backpropagation with slightly different f()s and g()s.
We found that the network performance was relatively insensitive to the precise values of these
functions as long as the general sigmoidal and hump-like forms of f() and g(), respectively, were pre-
served.

In the optical system we actually implemented a variation of backpropagation in which the input
error signals were trinary quantized to +1, 0, and -1 according to the algorithm reported by
Shoemaker et al.50 They found that trinary quantization improved the convergence speed of back-
propagation for a wide variety of problems. Our own computer simulations confirmed this.
However, our primary reason for trinary quantization was to avoid amplitude-dependent phase errors
in our liquid-crystal based SLM.

The optical input plane for backpropagation s621-00-062
is shown in Figure 24. The network consisted Y e ——o y%o) L
of three neuron layers (Lo, L, and L,) and two y?)-o/
weight layers. Note that the L;-L, weights are L, ‘\\ Lo L T
actually implemented as two separate sets of ‘\ y

weights, one for the forward pass L;-L, and + o+
another one for the backward pass Ly-L;. As :§§° -

N
explained previously, this is done because the - 2 S :1+ Lo
fanned reference beam (R plane) is always used Ei
to read out the unfanned object beam (O plane). L fz_ OPTICAL READOUT
In order to implement forward and backward o) R ~ OF NEURON VALUES
passes through the same set of effective weights, yeannED | (FANNED ELECTRONIC TRANSFER
two sets of photorefractive weights must be %%"\Eg)'f RE';%’;%’;CE “~OF NEURON VALUES

exposed. In this case they are exposed so as to

make the forward and backward weights as Figure 24. Optical input plane for backpropagation
nearly equal as possible (symmetric with a single hidden layer.

connections, w;;=wj;) although they can also be

made different (asymmetric connections) if required for certain networks. Although the L;-L; and
L,-L; sections of the input plane are shown spatially separated for clarity, in actuality they are
spatially interleaved in order to make the connections as symmetric as possible. The solid arrows
indicate optical connections between neurons via the hologram. Dashed arrows denote electronic
transfer of detected outputs from one layer (O plane) to the inputs of the next layer in the R plane.
This electronic operation is an order N operation while the optical interconnection is order N2, where
N is the number of neurons. The forward and backward weights between layers L and L, were
adjusted simultaneously in the interests of keeping the forward and backward weights as equal as

96FR1122 Final Report 40

9621-00-064

possible. This also causes unnecessary self- 0.7 T I T T
connections to be formed. The self-connections 0.6 (320 NEURONS)
do not, however, affect the operation of the © 0.5
network because they do not contribute to the
inputs of one layer to the next. The simul-
taneous adjustment of forward and backward
weights also speeds up execution.

Experimental results for the problem of
transforming one random binary pattern into
another using optical backpropagation are
shown in Figure 25. We plot two curves of total 0.7 T] T
output error versus epoch during learning for < 0.6 (1140 NEURONS) |
two different-sized networks. In both cases the @
network consisted of three layers of neurons
with a single hidden layer and the network
learned to associate two pattern pairs. In Figure
25(a) and (b) the numbers of neurons in the

40
EPOCH
(@)

three layers were 160-80-80 and 570-285-285, 0 50 100 150 200
respectively. In Figure 26 we show the behavior E'?g;"”

of the optical neurons during learning and

readout. In this case 252 neurons were arranged Figure 25. Optical backpropagation learning of two
in three layers as 128-62-62. As shown in random input/output associations. Results for two

i networks are shown, one with 320 neurons and the
Figure 26(a), for two exemplars the output error other with 1140 neurons.

decreased to O after 75 epochs. In order to track

the evolution of the output pattern for individual input patterns during learning, we plot the inner-
product of the output pattern vector with the reference vector (1,1,1,...,1) in Figure 26(b) for each of
two input patterns. This projection reduces the dimensionality of the output to one so that it can be
plotted. We can clearly see the buildup of the weights from small initial values to different steady
state values for the two exemplars. In Figure 26(c) we plot the output pattern vector projections
versus epoch as the network is continuously read out after learning is completed. The weight decay
can be clearly seen. Nevertheless, the error rate is less than 3% after more than 500 readout epochs,
despite weight decay, as is shown in Figure 26(d). This corresponds to 1000 separate readouts of the
network, The output error does not increase until after the weights have decreased by a large
amount, indicating the nonlinearities present in the network allowed it to learn a “safety margin”
which gave it limited immunity to weight decay.

We applied the optical backpropagation network to the same handwritten digit recognition prob-
lem discussed in the Perceptron section above. In order to improve performance we encoded each of
the class labels for the ten digits using the the first ten rows of a 16 column Hadamard matrix. The
advantages of a Hadamard representation include orthogonality and roughly balanced numbers of 1’s
and -1’s in the exemplar outputs. This balancing results in a more uniform distribution of weight

96FR1122 Final Report 41

9621-00-065

0.6 T T T T T 1 T

3 o] 0.08
0@
0.4 -
o)
: 1 &
2 o2 . 9
o o
=) 1) 1 I § 3 1 l E
0 100 200 30 400 50 g
a
0.08
[72]
@ 0.04
2 o
T 0 ®] - .
w E o4 -
] w -]
-0.04
& 3 o2| _
1 1 1 | L] I 1 1 s - .
0 200 300 400 500 & 0 bbb ek
0 100 EPOCH 0 100 200 300 400 500
EPOCH

(b))

Figure 26. Behavior of optical neurons during backpropagation learning and readout. (a) Total error
versus epoch during learning, (b) projection of output layer values onto a reference vector during learning.
Separate curves for two exemplar input patterns are shown, (c) output projections for the two exemplar
inputs during continuous readout of the network after learning was completed. The network was read out
500 times with each of the two exemplars for a total of 1000 readouts. Note the decrease in projection
magnitudes due to weight decay, (d) corresponding errors during the readout phase. The neuron
nonlinearities kept the error rate small for more than 1000 readouts despite weight decay.

values which reduces the optical dynamic range requirements. In reading out the network, vector
quantization on the output layer was performed in which the Hadamard vector closest to the network
output was selected as the class label. The network consisted of 676 input neurons (the handwritten
digit patterns consisted of 26 X 26 pixels), 90 hidden neurons, and 16 output neurons.

The error curve during learning for the case of two classes with 20 exemplars each is shown in
Figure 27(a). A correct classification rate of 97% was achieved on test digits not used for learning,
showing that generalization occured. The performance decreased when the number of classes was
increased to ten, as can be seen in Figure 27(b). During learning, the errors first reached zero after
200 epochs, but an erratic component kept the average error rate at 10%. After terminating learning
at 800 epochs, the network achieved a correct recognition rate of 55% on 20 test digits not used dur-
ing learning. This is still much greater than the 10% expected by chance, indicating that some gen-
eralization occured. Computer simulations using the same number of exemplars achieved a 63% cor-
rect recognition rate. Computer simulations using 2000 exemplars achieved a 97% correct recogni-
tion rate, confirming that large numbers of exemplars are desirable. (Note, however, that 2000
exemplars is still much smaller than what would be predicted as necessary using the worst-case esti-
mates of Section 2.2 for a network of this size.) Our current research is focused on improving these
initial results by increasing the number of exemplars and classes that can be learned and improving

96FR1122 Final Report 42

9621-00-074
262100 072

the recognition rate. By so doing,
nonfundamental factors limiting the
performance can be identified and eliminated.

5.3 Self-Organizing Map

A schematic illustration of the operation of a
Kohonen self-organizing map (SOM) neural
network3! is shown in Figure 28. The function
of the SOM is to map “close” points in the input
space to “close” points in a lower
dimensionality output space. The applications
for SOM include data compression and pattern
recognition. Results for a SOM neural network
implemented using SPONN are shown in Figure
29. In this experiment the input layer contained
676 neurons arranged in a 2-D format. The
output layer contained 512 neurons, resulting in
a total of 3.5 x 105 weights. The training set
consisted of handwritten digits from a Postal
Service database. In Figure 29 we show the
input plane and the corresponding output plane
before and after unsupervised learning. The
standard SOM algorithm was implemented with
linear time shrinkage of the update

neighborhood centered on the maximum Figure 27. Optical backpropagation learning of
responding output neuron. Nearest neighbors handwritten c!lglts. Network consisted of 676 input
fined D h in th neurons, 90 hidden neurons, and 16 output neurons.
were defined on a 2-D mesh in the output plane.) Ty, ciasses and 10 exemplars per class.

After learning was completed, the optical SOM Generalization performance on novel test digits was

clustered the inputs into classes corresponding 97% correct classification_, (b) Ten classes and 1 exem-
plar per class. Generalization performance on novel

to numerals, as shown in Figure 29. test digits was 55% correct classification.

TOTAL ERROR

80 100

5.4 Future Directions

Our experience in constructing and operating an optical neurocomputer has revealed to us two
general types of issues related to implementing large neural networks. They include issues related to
the training of large networks (independent of the particular implementation architecture) and issues
specifically related to improving the performance of HONNSs.

With regard to training, generally speaking, large fully connected neural networks will require
very large training sets and long training times (Section 2.2) unless mitigating measures are taken.
These measures include limiting the connectivity, incorporating hints and prior knowledge in the
structure of the network, using self-organization to reduce the dimensionality of inpui patterns, and

96FR1122 Final Report 43

i 9129-06-029

OUTPUT 7

INPUTE
8j
INITIALLY
P
CLUSTERING
OF WEIGHTS
ACCORDING TO
AFTER 2 DISTRIBUTION OF
TRAINING TRAINING SET

1 Wi1

Figure 28. Results for optically-implemented Kohonen self-organizing neural
network. (a) Before training (b) After training.

9621-00-068

(@ (b)

Figure 29. Optical implementation of partially connected neural networks.

96FR1122

Final Report 44

using regularization to eliminate unimportant weights. An important capability which has not yet
been implemented in optical neurocomputers is programmability of the neural network connectivity.
In the SPONN neurocomputer built under this contract, all neurons in one layer can potentially form
connections with all neurons in the next layer. We know that biological neural networks do not
exhibit such global connectivity. Typically, neurons are connected to other nearby neurons. For
example, neurons in the visual cortex respond to features within receptive fields which are a small
fraction of the total visual input. Such compartmentalization serves to organize the nervous system
and reduce its complexity, which makes learning more tractable. Programmable connectivity is
important to reducing the size of training sets required for large neural networks.

One method we propose for controlling network connectivity is to control the mutual coherence
of neurons by time-modulating their outputs using orthogonal or near-orthogonal phase codes, as
shown in Figure 30. Hebbian weight updates between neurons with dissimilar phase codes will
average out to zero, while updates between neurons with identical phase codes will build up to a
nonzero value. Such phase modulation of neurons can be implemented optically using the setup
shown in Figure 31. Neuron activity values are displayed on SLM 1. SLM 2, operating in transmis-
sion mode, displays regions which are time-modulated by different phase codes. Light beams con-
necting neurons are then amplitude-modulated by activity values on SLM 1 and phase-modulated in
time by phase codes on SLM 2 which define what combinations of neuron groups will form connec-
tions. The phase of light fringes formed by any two optical beams will vary in time if the phase
codes of the beams are different, therefore any photorefractive gratings in the hologram will be
smeared out and no connection will be formed. If the phase codes are equal, the fringes will be sta-
tionary, allowing photorefractive gratings and the resultant connection to be formed. In this way,
large neural networks with limited connectivity can be formed.

41

RECEPTIVE
FIELDS

932-06-071

PHASE MODULATION
OF NEURONS USING
ORTHOGONAL CODES

Figure 30. Partial connectivity can be programmed in optical neural networks by controlling the
mutual coherence of optical neurons.

96FR1122 Final Report 45

9329-06-068

' oW HOLOGRAM

_ o (B

SLM 1 SLM 2 oi (1)
(NEURON (NEURON j
VALUES) CONNECTIVITY)

9;(t) AND ;(t) ARE ORTHOGONAL PHASE CODES: J¢;0; dt = &;
Figure 31. Optical neurocomputer based on smart pixels.

An important factor in determining the overall system performance of the optical neurocomputer
is how information is transported from the optical detectors (CCD pixels) back to the optical neurons
(SLM pixels). In the present HONN system, this communication is done serially over the bus of the
host computer, as shown in Figure 32. This pathway can be a potential bottleneck for the system.
As shown in the figure, the computation rate for a bus-limited HONN is proportional to the number
of neurons for fully connected networks. It is also proportional to the input/output bandwidth of the
detector and SLM. If we assume 105 fully connected neurons and a detector bandwidth of 107 neu-
ron values per second, then a throughput of 1012 connections per second could be theoretically
achieved. A potential development path is to incorporate a fully parallel optical interconnection
between the detector array and the SLM. This could be done by incorporating emitters, detectors,
and perhaps some simple processing electronics at each pixel location. Such “smart pixels”>2 could
greatly increase the throughput of the HONN, as shown in Figure 33. By eliminating the bottleneck
caused by using the host bus to transfer information from detectors to the optical neurons, the
throughput becomes proportional to the number of weights rather than the number of neurons. The
theoretical throughput rate increases to 1017 connection updates per second.

96FR1122 Final Report 46

22906070

SLM HOLOGRAM DETECTOR

EX.: Nngurons = 1070

N N Nue § NweigTs = 101°
WEIGHTS = WEIGHTS "SLO Telec. NIIO felec. =10 MHZ

COMPUTATION RATE: R =

TrrRAME NNEuRONS

-* R = 1012CONNJSEC.

= FOR FULLY CONNECTED NETWORKS,SPEEDUP IS LINEAR IN Nygyrons

Figure 32. Parallelism of smart pixel based holographic neural network.

9329-06-069

FULLY PARALLEL OPTICAL INTERCONNECT

SMART PIXEL HOLOGRAM SMART PIXEL
" ARRAY. ARRAY_-

OPTICAL
INPUT

ELECTRONICS g

HOST

N
COMPUTATION RATE: R= —ECHTS ey : NweigHTs = 1010

T
FRAME TrrAME = 100 nsec

SPEEDUP IS LINEAR IN NygigHTS R = 1017 CONN./SEC.

Figure 33. Development paths of holographic neurocomputer.

96FR1122 Final Report

47

Two potential development paths for SPONN are shown in Figure 34. If the currently used
video-based image processing cards are kept for input/output to the optical portion of SPONN, then
future improvements will come from increasing the neuron density on the SLM and CCD detector
array. The frame times will stay roughly constant and improvements will follow the lower slope
shown. This development path assumes commercially available video display devices based on lig-
uid crystals, which have response times of about 30 msec, are used as the SLM. Incorporating smart
pixels will result in greater increases in performance along the steeper slope, but at greater risk since
we could not then leverage the large amount of research being done on multi-media display devices.

1018

1016

=Y

=)
-
L)

1012

1010

SPEED (R, CONNECTIONS/sec)
2

1014

IS i I N N B [
102 10% 106 108 1010 1012

STORAGE (NweignTs, CONNECTIONS)

Figure 34. Holographic optical neural network development paths.

96FR1122 Final Report © 48

6. SUMMARY

In this final report we described a compact optical neurocomputer based on a laser diode light
source and holographic storage and optical interconnection using photorefractive crystals. This neu-
rocomputer utilizes a novel technique for optically implementing neural network models: multiple
grating holography. By distributing each connection weight among a plethora of cascaded gratings
which vary in position and orientation, several advantages are obtained. First, Bragg degeneracy is
eliminated which permits the placement of pixels in arbitrary 2-D patterns in the input and output
planes, leading to new flexibility in holographic recording. Second, distortions due to beam coupling
are greatly reduced which results in undistorted weight vectors and good quality reconstructed
images. This permits the design of compact programmable holographic neurocomputers which are
composed of a single photorefractive crystal, SLM, and detector. The utilization of the SLM is max-
imized because every pixel can be used without fear of crosstalk. In this report we described the
construction of a compact neurocomputer based on a laser diode light source and this innovative
holographic recording method. We showed the programmability of such an optical neurocomputer
by demonstrating several networks (including multi-layer backpropagation) on the same hardware
without adjustment of the optical components and with throughput rates of up to 10° weight updates
per second during learning. A new coherent detection method for efficient optical representation of
bipolar weights and neurons was also developed. A technique for programming the connectivity of
neural network models implemented optically was invented as well under this contract.

As discussed in Section 6, we see future optical neurocomputers being used for applications
which require large neural networks. Analog optics has advantages over electronics in terms of
power consumption, size, and cost as the neural network size increases. The challenge for electron-
ics is not the number of neurons, but rather how to fit the interconnections between neurons into the
2-D format of silicon chips and wafers. The benefits that optics brings to neural networks include
massive parallelism and true three-dimensional interconnectivity. A real-time hologram can inter-
connect two 2-D planes of neurons in arbitrary patterns using the third dimension. This makes optics
especially suitable for implementing large highly-interconnected neural networks (103 to 106 neu-
rons) with high processing rates (1010 to 1012 connections/sec). The advantages of optics over elec-
tronics become less as the network size decreases. Specialized electronic chips and parallel comput-
ers will be preferred for problems with smaller numbers of neurons.

We saw in Section 3.1 that a feature of real-time holography using photorefractive crystals is
weight decay, the partial erasure of previously recorded weights that is incurred as the weights are
updated or read out. Weight decay has both positive and negative aspects. On the positive side,
weight decay can help to regularize a network. Unused or weak weights decay away so the final
network is simpler in form than it would be otherwise, which improves generalization. It also pre-
vents weights from becoming too large and saturating the outputs. On the other hand, weight decay
can distort learning rules, although the distortion can be minimized by using small weight values and
increasing the detector gain. Another effect of weight decay is that the final weight value is equal to
the average of all the weight updates, rather than the simple sum. This limits the number of expo-

96FR1122 Final Report 49

sures that can be recorded in the crystal to a finite value which is dependent on the dynamic range of
photorefractive gratings. As discussed in Section 3.1, this number can be quite large, as the photore-
fractive dynamic range has been measured to be at least 100 db. Theoretical calculations indicate the
limiting dynamic range may be 140 db. This suggests that up to 107 separate exposures can be
superimposed in photorefractive crystals. Nevertheless, the number of exemplars required for good
generalization may also be large, especially for large networks. Methods may have to be developed
to reduce the number of required exemplars, such as providing “hints” or tailoring the network
structure to the problem at hand.

The laser diode-based optical neurocomputer we have described in this final report provides fur-
ther experimental evidence that it is technically feasible to implement large neural networks using
real-time volume holography in photorefractive crystals. Future generation optical neurocomputers
will be economically successful in applications requiring very large neural networks, such as vision,
database mining, and optimization, but only if several issues are addressed and resolved by continued
research. It is well known that large neural networks, although powerful, can require large training
sets and long training times, especially if existing small neural network training algorithms are sim-
ply scaled up to train large networks. Techniques for reducing the training set size and training
times, such as regularization (which can utilize weight decay), pruning, prestructured connectivity,
modularization, and hints, will need to be incorporated in optical neural networks to make them
practical. In addition, we feel that self-organization will play an important role in future optical neu-
ral networks as a means to handle the increased complexity of large neural networks.

In summary, holographic optics based on photorefractive crystals appears to be extremely
promising for the implementation of large neural network models. Working optical neural networks
have been demonstrated even though the field is still on the early part of the learning curve. Based
on these early results, we are optimistic that optics will play a significant role in future implementa-
tions of neural networks.

96FR1122 Final Report 50

[\

7. REFERENCES

M. L. Minsky and S. A. Papert, Perceptrons, M.I.T. Press, 1969.

V. Y. Kreinovich, “Arbitrary Nonlinearity is Sufficient to Represent All Functions by Neural
Networks: A Theorem,” Neural Networks Vol. 4, pp. 381-383 (1991).

The performance figures of the electronic hardware were taken from J. Alspector, “Parallel
Implementations of Neural Networks: Electronics, Optics, Biology,” in Technical Digest of
1991 Topical Meeting on Optical Computing, Optical Society of America, 1991.

H.-Y. Li, Y. Qiao, and D. Psaltis, “An optical network for real time face recognition,” Appl.
Opt., March, 1993.

F. Mok and H. M. Stoll, “Holographic inner-product processor for pattern recognition,” SPIE
Proceedings Vol. 1701, 1992.

S. Judd, “Learning in Networks is Hard,” Proceedings of IEEE International Conference on
Neural Networks, San Diego, 1987, p. II-685.

7. Neural Networks and Natural Intelligence, edited by S. Grossberg, M.LT. Press (1988).

8. T. Kohonen, Self-Organization and Associative Memory (Second Edition), Springer-Verlag

10.

11.

12.

13.

14.
15.

16.

17.

18.

(1988).

D. W. Ruck, S. K. Rogers, M. Kabrisky, M. E. Oxley, and B. W. Suter, “The Multilayer
Perceptron as an Approximation to a Bayes Optimal Discriminant Function,” IEEE Trans.
Neural Networks 1, 296-298 (1990).

V. N. Vapnik and A. Y. Chervonenkis, “On the Uniform Convergence of Relative Frequencies
of Events to Their Probabilities,” Theory of Probability and Its Applications 16, 264-280 (1971).

J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation,
Addison-Wesley, Redwood City, 1991.

E. B. Baum and D. H. Haussler, “What Size Net Gives Valid Generalization?,” Neural
Computation 1, 151-160.

J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation,
Addison-Wesley (1991).

Y. Abu-Mostafa, “Hints,” Neural Computation 7, 639-671 (1995).

Y. Abu-Mostafa, “Appendix D: Complexity in Neural Systems,” in Analog VLSI and Neural
Systems by C. Mead, Addison-Wesley, 1989.

C. L. Giles and T. Maxwell, Learning, invariance, and generalization in high-order neural net-
works, Appl. Optics 26, 4972-4978 (1987).

M. Cohen, H. Franco, N. Morgan, D. Rumelhart, and V. Abrash. Context-dependent multiple
distribtion phonetic modeling, in Advances in Neural Information Processing Systems 5, D.
Touretzky, Ed., Morgan Kaufmann, 1993.

B. Widrow, D. E. Rumelhart, and M. A. Lehr. Neural networks: applications in industry, busi-
ness, and science, Comm. of the Assoc. for Computing Machinery 37 (3), 93-105 (1994).

96FR1122 Final Report 51

19. D. Psaltis, D. Brady, and K. Wagner, “Adaptive optical networks using photorefractive crys-
tals,” Appl. Opt. 27, 1752-1759 (1988).

20. B. K. Jenkins and A. R. Tanguay, Jr., “Photonic Implementations of Neural Networks,” in
Neural Networks for Signal Processing, B. Kosko, ed., Prentice-Hall, 1992, 287-382.

21. D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in Artificial Neural Networks,” Nature
343, 325-330 (1990).

22. See special issue of Applied Optics on neural networks, March, 1993.

23. H. Kogelnik (1969). “Coupled wave theory for thick holograms,” Bell Sys. Tech. J. 48, 2909-
2946.

24. F. H. Mok and H. M. Stoll (1992). “Holographic Inner-Product Processor for Pattern
Recognition,” SPIE Proceedings 1701.

25. N. V. Kukhtarev, V. Markov, and S. Odulov, “Transient energy transfer during hologram forma-
tion in LiNbO3 in external electric field,” Opt. Comm. 23, 338-343 (1977).

26. Y. Taketomi, J. E. Ford, H. Sasaki, J. Ma, Y. Fainman, and S. H. Lee, “Incremental recording
for photorefractive hologram multiplexing,” Opt. Lett. 16, 1774-1776 (1991).

27. K. Blotekjaer, “Limitations on holographic storage capacity of photochromic and photorefrac-
tive media,” Appl. Opt.

28. T. Y. Chang, J. H. Hong, F. Vachss, and R. McGraw, “Studies of the Dynamic Range of
Photorefractive Gratings in Ferroelectric Crystals,” J. Opt. Soc. Am. B 9, 1744-1751 (1992).

29. C. Gu and P. Yeh, “Scattering due to randomly distributed charge particles in photorefractive
crystals,” Opt. Lett. 16, 1572-1574 (1991).

30. D. Psaltis, D. Brady, X.-G. Gu, and S. Lin, “Holography in artificial neural networks,” Nature
343, 325-330 (1990).

31. K. Rastani and W. M. Hubbard, “Large interconnects in photorefractives: grating erasure prob-
lem and a proposed solution,” Appl. Opt. 31, 598-605 (1992).

32. C. Slinger, “Analysis of the N-to-N volume holographic neural intercdnnect,” J. Opt. Soc. Am.
A 8, 1074-1081 (1991).

33. G. P. Nordin, Volume Diffraction Phenomena for Photonic Neural Network Implementations
and Stratified Volume Holographic Optical Elements, Ph.D. Thesis, University of Southern
Calif. (1992).

34. A. Chiou, “Anisotropic cross talk in an optical interconnection by using a self-pumped phase-
conjugate mirror at the Fourier plane,” Opt. Lett 17, 1018-1020 (1992).

35. Y. Owechko, “Self-Pumped Optical Neural Networks,” in Proceedings of 1989 Topical Meeting
on Optical Computing, (Optical Society of America, 1989 Technical Digest Series Vol. 9), 44-
47. :

36. Y. Owechko, in Conference Record of 1990 International Topical Meeting on Optical
Computing, (SPIE, 1990) pp. 142-146.

96FR1122 Final Report A 52

37

38.

39.

40.

41.

42.

43.

45.

46.
47.

48.

49.

50.

51.

Y. Owechko and B. H. Soffer (1991). “Optical interconnection method for neural networks
using self-pumped phase conjugate mirrors,” Opt. Lett. 16, 675-677.

G. J. Dunning, Y. Owechko, and B. H. Soffer (1991). “Hybrid optoelectronic neural networks
using a mutually pumped phase conjugate mirror,” Opt. Lett. 16, 928-930.

Y. Owechko and B. H. Soffer, “Optical Neural Networks Based on Liquid Crystal Light Valves
and Photorefractive Crystals,” SPIE Proceedings, Vol. 1455, 136-144 (1991).

M. D. Ewbank, “Mechanism for photorefractive phase conjugation using incoherent beams,”
Optics Letters 13, 47-49 (1988).

Photorefractive Materials and Their Applications I, edited by P. Gunter and J. P. Huignard,
Springer-Verlag (1988).

J. E. Ford, Y. Fainman, and S. H. Lee, “Enhanced photorefractive performance from 45°-cut
BaTiO3,” Appl. Opt. 28, 4808-4815 (1989).

See special issue of IEEE Journal of Quantum Electronics on Semiconductor Diode-Pumped
Solid-State Lasers, Vol. 28, No. 4 (1992).

B. A. Wechsler, M. B. Klein, C. C. Nelson, and R. N. Schwartz, “Spectroscopic and photore-
fractive properties of infrared-sensitive rhodium-doped barium titanate,” Opt. Lett. 19, 536-538

(1994).

J. H. Hong, S. Campbell, and P. Yeh, “Optical pattern classifier with Perceptron learning,”
Appl. Opt. 29, 3019-3025 (1990).

R. Rosenblatt, Principles of Neurodynamics, Spartan Books, New York, 1962.

D. B. Parker, “Learning Logic,” Invention Report S81-64, File 1, Office of Technology
Licensing, Stanford Univ. (Oct. 1982).

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representations by error
propagation,” in Parallel Distributed Processing, Vol. 1, D. E. Rumelhart and J. L. McClelland,

Eds., MIT Press, (1986).

P. A. Shoemaker, M. J. Carlin, and R. L. Shimabukuro, “Backpropagation Learning With
Trinary Quantization of Weight Updates,” Neural Networks 4, 231-241 (1991).

T. Kohonen, Self-Organization and Associative Memory (Second Edition), Springer-Verlag
(1988).

See special issue of IEEE Journal of Quantum Electronics on smart pixels, February, 1993.

96FR1122 Final Report 53

Appendix A
DESCRIPTION OF HONN SOFTWARE

A.1 List of SPONN Programs
Register Address Frame Memory Address
VFG 1 0x360 0xD0000
(Input)
VFG 2 0x320 0xD0000
(Output and VisionBus
Master)
IPA 0x340 0xD0000
Program Purpose Comments
learn22.c Single output Perceptron, dual-rail detection
learn22e.c | Single output Perceptron, balanced coherent | Compatible with Cohu variable integration
detection CCD camera
learn29.c Hologram superposition test
learn31.c Multiple-output Perceptron
learn34q.c | Backpropagation classification of handwritten
digits, dual-rail detection
learn34s.c | Backpropagation classification of handwritten | Compatible with Cohu variable integration
digits, balanced coherent detection CCD camera
learn40.c Self-organizing classification of handwritten Compatible with Cohu variable integration
digits CCD camera
learn4ie.c | Tests weight encoding using dual-rail method,
records readout of Hadamard vectors
learn41f.c | Tests weight encoding using dual-rail method,
records time evolution of weights
coheri.c Tests weight encoding using coherent detec-
tion, records time evolution of weights
coher2.c Tests weight encoding using balanced coher- | Compatible with Cohu variable integration
ent detection, records time evolution of CCD camera ’
weights
weight.c Tests hologram fan-in
init1.c Initializes VFG 1
init2.c Initializes VFG 2
init3.c Initializes IPA
alignvig.c | Aligns output pixels Generates coordinate and normalization file
for output neurons (align64.dat). Works with
Cohu variable integration CCD camera.
rneuron.c Plots selected output neuron value vs time Works with Cohu variable integration CCD
camera.
noise.c Plots selected pixel values vs time Works with Cohu variable integration CCD
camera.
96FR1122 Final Report A-1

A.2 Optical Neurocomputer Program Listing: learn34s.c (Backpropagation)
/* learn34s.c
Optical backpropagation using balanced coherent detection to represent bipolar
outputs. All neurons are bipolar except for input neurons.

Values of selected neurons are recorded during learning in file
Irn34s.csv. Output coobdinates and gain and offset correction factors are
read from align64.dat, which is generated using alignvfg.c.

No. of random patterns used during weight initialization is an input
parameter.

This program implements a two-layer, single hidden-layer,
backpropagation neural network implemented in a cascaded-grating optical
neural network which recognizes handwritten digits

from a Post Office database. The network has 676 unipolar (0,1) input
neurons, 540 bipolar (-1,1) hidden neurons, and 32 bipolar (1,-1)

output neurons.

SLM nonlinearity may be compensated by the input frame grabber.
L1 and L2 fields are spatially interleaved. Weights are initialized using

a sum of random outer-products.

Trinary quantization of weight updates is an option.
It is based on the method of Shoemaker, Carlin, and Shimabukuro.

Thresholded output error depends only on correctness of output sign.

The classification label is coded in a Hadamard vector instead of having

ten outputs with each representing a class and choosing the maximum one. Instead,
we calculate the distance of the output pattern from each of class-

labeled patterns and choose the closest one. In other words, vector

quantization is performed on the output patterns.

Customized for Cohu 1122 CCD camera in variable integration mode.
Yuri Owechko, Hughes Research Laboratories
*/

#include <graph.h>
#include <ctype.h>
#include <stdio.h>
#include <conio.h>
#include <math.h>
#include <process.h>
#include <time.h>
#include <float.h>
#include <dos.h>
#include <search.h>
#include <stdlib.h>

/* For VFG and IPA */
#include <sysvsp.h>
#include <gaoi.h>
#include <argtypes.h>
#include <fcb.h>
#include <ipa.h>

96FR1122 Final Report

/* First bit controls laser and detector LC cells,
second bit controls object LC cell, third bit controls
phase of ref. */

#define WRITE_POS 3
#define WRITE_NEG 7
#define READ_POS 0
#define READ_NEG 4

#define SPONN_INPUT 1
#define SPONN_OUTPUT 2

#define NCLASS 10

int brand(),arand(),getbits(),round(),hsgn(),compare_sign();

void prepare_fg(),exemplar_digit(),init_weights(),verify_align();
void readout_L1(),readout_L2(),input_ex();

void exemplar_random_LO0(),disp_cell(),transfer_L1();

void train_W1(),train_W2(),backward(),draw_digit();

void select_INPUT(),select_OUTPUT(),snap_xtrg();

float error_learn(),error_read(),read_neuron(),fsigmo(),ghump();
float dist2();

FILE *fopen(),*stream,*fp;

int xout{32][64][16],yout[321[64][16],xt[100],yt[100];

int xin_obj[32],yin_obj[64], mxmax,mymax,mmax,seed,seed2;

int xin_ref[32],yin_ref[64],size,size2,size9,npixneu;

int arraydim,arraydim?2,base1,base2,xmax,ymax,dxi,dyi,dxo,dyo;

int confus_trainf]NCLASS][NCLASS],confus_testfNCLASS][INCLASS];

int pxout[32][64],pyout[32][64],gain,offsetval;

long int on_time,off_time,video_delay;

float sum_pos[32][32],sum_neg[32][32],neuron_norm[32][64];

float yy1[30][18],yy2[16][2],deltal[30][18],delta2[16][2],looptime;

float toterr[1000],toterr_read[1000],rms_err,totrms_err,fgamma_y1,fgamma_y2;

/* Initialize N=32 Hadamard output vectors as labels for each of the NCLASS output classes */

int iex]NCLASS][32]={

bt o

{,1,1,1,1,1,41,1,4,1,1,1,,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1, 1, 1, 1, 1},

{1-1,1-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1, 1,-1},
{1,1,-1-1,1,1,1,-1, 1, 1,-1,-1,1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1},
{1,-1,-1,1,1,-1,-1,1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,-1, 1},
{1,1,1,1,-1,1,-1,-1,1,1, 1, 1,-1,-1,-1,-1, 1, 1, 1, 1,-1,-1,-1,-1, 1, 1, 1, 1,-1,-1,-1,-1},
{1,-1,1,-1-1,1,-1, 1, 1,-1, 1,-1,-1, 1,-1, 1, 1,-1, 1,-1,-1, 1,-1, 1, 1,-1, 1,-1,-1, 1,-1, 1},
{1,1,-1,-1,-1,-1,1,1, 1, 1,-1,-1,-1,-1, 1, 1, 1, 1,-1,-1,-1,-1, 1, 1, 1, 1,-1,-1,-1,-1, 1, 1},
{1,-1,-1,1,-1,1,1,-1,1,-1,-1, 1,-1, 1, 1,-1, 1,-1,-1, 1,-1, 1, 1,-1, 1,-1,-1, 1,-1, 1, 1,-1},
{1,1,1,1,1,1,1, 1,-1,-1,-1,-1,-1,-1,-1,-1, 1,1, 1, 1, 1, 1, 1, 1,-1,-1,-1,-1,-1,-1,-1,-1},
{1-1,1 1-1,1,1-1, 1,-1, 1,-1, 1,-1,-1, 1,-1, 1,-1, 1,-1, 1}

struct dosdate_t date;
struct dostime_t timel;
struct dostime_t time2;

char error_message[] = "This video mode is not supported";
char buffer[255],comment{200],comment2[200],comment3[200],stemp[200];

96FR1122 Final Report

A-3

A

main()

{

int n,m,mx,my,mx2,my2,i,j,k,nepoch,nepoch2,ntotal, kmax1,imax1,imax2;
int err_value,nframes,nclass,nexemp,nexemptot,ntest,ntesttot,decquant,declut2;
int xbase,ybase,zoomval,v1[256],dig_index,c,nterm,ncount,decdisp,declut;
int i1,i2,nx,ny,value,shift, kx,ky,xindex,yindex,obj_bias;

long int delay3,int_time,lval klong;

long int Itime,prevtime;

float ftime,gain2,ontime,offtime,error,f1,f2,e1;

float inttime,inttime2,fval,eps1,eps2,delta2gain;

char blk,ch,cval;

basel1=592; /* 592=250h PPI 1 base address */
base2=596; /* 596=254h PPI 2 base address */
blk=219; /* Solid block ASCII character */

Set mode of DIO48 1/O card for Mode 0, all outputs */

outp(base1+3,128);
outp(base2+3,128);

if ((stream=fopen("learn34s.inp","r"))==NULL)
{printf("cannot open learn34s.inp\n");
exit(0);}

else
printf("learn34s.inp parameter file opened for reading\n");

fgets(comment2,80,stream);
fgets(comment,80,stream),;
fgets(comment3,80,stream);

printf("Enter 1 for full graphics, 0 otherwise\n");
fgets(stemp,200,stream);
fscanf(stream,"%d\n",&decdisp);
printf("%d\n",decdisp);

printf("Enter no. of classes to learn, no. of exemplars per class,

and no. of test patterns per class\nnclass*(nexemp-+ntest)<=240\n");
fgets(stemp,200,stream);

fscanf(stream,"%d %d %d\n",&nclass,&nexemp,&ntest);
printf("%d %d %d\n",nclass,nexemp,ntest);
nexemptot=nclass*nexemp;

ntesttot=nclass*ntest;

printf("Enter zoom value for display field size : ");
fgets(stemp,200,stream);
fscanf(stream,"%d\n",&zoomval);
printf("%d\n",zoomval);

arraydim=pow(2,9-zoomval);
arraydim2=arraydim/2;
printf("Display field dimension is %d\n",arraydim);

size=1; size2=2%*size; size9=9*size;

96FR1122 Final Report

printf("Enter no. of training epochs up to 1000: ");
fgets(stemp,200,stream);
fscanf(stream,"%d\n",&nepoch);
printf("%d\n",nepoch);

printf("Enter no. of readout epochs up to 100: ");
fgets(stemp,200,stream);
fscanf(stream,"%d\n",&nepoch2);
printf("%d\n",nepoch2);

printf("Enter exemplar integration time in sec: ");
fgets(stemp,200,stream);
fscanf(stream,"%f\n",&inttime);
printf("%f\n",inttime);

printf("Enter Output Frame Grabber gain from 1 to 4: ");
fgets(stemp,200,stream);

fscanf(stream,"%f\n",&gain2);

printf("%f\n",gain2);

gain=255*gain2/4;

printf("Enter Output Frame Grabber offset from O to 255: ");
fgets(stemp,200,stream);

fscanf(stream,"%d\n",&offsetval);

printf("%d\n",offsetval);

printf("Output Frame Grabber input LUT: 0 for unmodified, 1 for sqrt \n");

fgets(stemp,200,stream);
fscanf(stream,"%d\n" &declut)
printf("%d\n",declut);

printf("Input Frame Grabber output LUT: 0 for unmodified, 1 for linearized output\n");

fgets(stemp,200,stream);
fscanf(stream," %d\n",&declut2);
printf("%d\n",declut2);

printf("Enter fsigmo gamma values for y1 and y2: ");
fgets(stemp,200,stream);

fscanf(stream,"%f %f\n",&fgamma_y1,&fgamma_y2);
printf("%f %f\n" fgamma_y1,fgamma_y2);

printf("Enter 1 for trinary quantization of weight updates, O otherwise:\n");
fgets(stemp,200,stream);

fscanf(stream,"%d\n",&decquant);

printf("%d\n",decquant);

printf("Enter eps1 for y1 quantization and eps2 for delta2 and deltal:\n");
fgets(stemp,200,stream);

fscanf(stream,"%f %f\n",&eps1,&eps2);

printf("%f %f\n",eps1,eps2);

printf("Enter SLM turn-on and turn-off times in sec: ");
fgets(stemp,200,stream);

fscanf(stream," %f %f\n",&ontime,&offtime);
printf(" %f %f\n",ontime,offtime);

96FR1122 Final Report

A-5

printf("Enter seed integer for random number generator: ");
fgets(stemp,200,stream);

fscanf(stream,"%d\n",&seed);

printf("%d\n",seed);

seed2=seed;

printf("Enter delta2 gain factor for backward error propagation: ");
fgets(stemp,200,stream);

fscanf(stream," %f\n",&delta2gain);

printf("%f\n" delta2gain);

printf("Enter number of terms in outer-product sum for initializing weights: ");
fgets(stemp,200,stream);

fscanf(stream,"%d\n",&nterm);

printf("%d\n",nterm);

printf("Enter object plane value for use as reference in coherent detection (0-255): ");
fgets(stemp,200,stream);

fscanf(stream,"%d\n",&obj_bias);

printf("%d\n",obj_bias);

fclose(stream);

video_delay=70000;
nframes=1;

/* Prepare frame grabbers */
prepare_fg(zoomval,declut,declut2);

/* Store exemplars in frame grabber memory */
exemplar_digit(nclass,nexemp,ntest,obj_bias);

/* Calibrate time base */
time(&Itime);
prevtime=ltime;
for(klong=0;klong<2000000;klong++);
time(<ime);
ftime=Itime-prevtime;
looptime=ftime/2000000.0;
int_time=inttime/looptime;
on_time=ontime/looptime;
off_time=offtime/looptime;

/* Verify alignment of CCD pixels for optical output */
verify_align(obj_bias);

/* Initialize weights before learning */
init_weights(int_time,nterm);
for(j=0;j<=9;j++){

for(i=0;i<=9;i++){
confus_train[i][j]=0;} }

96FR1122 Final Report

if (_setvideomode(_ERESCOLOR) == 0) {
printf ("%s\n", error_message);
exit(0);
}

sprintf(buffer, "learn34s.C: OPTICAL BACKPROPAGATION NEURAL NETWORK");

_settextposition(1,0);
_outtext(buffer);

sprintf(buffer, " DEMONSTRATION OF HANDWRITTEN DIGIT RECOGNITION");

_settextposition(2,0);
_outtext(buffer);

sprintf(buffer,"1248 Neurons (676 Input, 540 Hidden, 32 Output) and 382,000 Weights");

_settextposition(3,0);
_outtext(buffer);

sprintf(buffer,"Learning Phase");
_settextposition(4,0);
_outtext(buffer);

sprintf(buffer,"Total Epoch Error:");
_settextposition(5,0);
_outtext(buffer);

sprintf(buffer,"0");
_settextposition(7,0);
_outtext(buffer);

sprintf(buffer,"1");
_settextposition(7,39);
_outtext(buffer);

sprintf(buffer,"l");
_settextposition(6,39);
_outtext(buffer);

sprintf(buffer,"|");
_settextposition(6,0);
_outtext(buffer);

sprintf(buffer,"Epoch:");
_settextposition(8,0);
_outtext(buffer);

sprintf(buffer,"Exemplar:");
_settextposition(8,13);
_outtext(buffer);

sprintf(buffer,"Classification:");
_settextposition(10,40);
_outtext(buffer);

dxi=234/26;
dyi=130/26;
dxo0=60;
dyo=4,

96FR1122

Final Report

A-7

/* Borders for displays of input/output fields */

sprintf(buffer, "Input Field LO");
_settextposition(22,7);
_outtext(buffer);

sprintf(buffer, "Output Field L2");
_settextposition(22,46);
_outtext(buffer);

_setcolor(12);
_rectangle(_GBORDER,0,140,2+26*dxi,155+26*dyi);
_rectangle(_GBORDER,159+26*dxi,149,161+26*dxi+dx0,151+32*dyo);

/***/

/* Learning Loop Using Exemplars */
/***/

_dos_gettime(&timel);
f1=1.0/(nexemptot);
2=1.0/sqrt(16*nexemptot);

if((stream=fopen("lrn34s.csv","w"))==NULL)
{ printf("cannot open 1rn34s.csv\n");

exit(0); }

else

printf("\nlrn34s.csv file opened for writing\n");

fprintf(stream, "learn34s.c: Selected subset of neuron values during learning\n\n");
fprintf(su‘earrl,"Exemplar No' 1: XI71”577?77’y1’,”’,1,7,’X2!9”!y271’77e13’!’7!99’7’delta1
7!”11!!!!,Exemp1a'r No‘ 2: XI?’?7’¥1”,3y1!9’37,”’97X2”97!y29)777e17!7”7’9!,9delt’a17!7,?’9”’7T0t'a1 RMS Error\n\ll");

for(n=0;n<nepoch;n++){

for(j=0;j<=9;j++){
for(i=0;i<=9;i++){
confus_train[i][j]}=0;} }

sprintf(buffer,"%d ",n);
_settextposition(8,9);
_outtext(buffer);
sprintf(buffer,"Exemplar: ");
_settextposition(8,13);
_outtext(buffer),

totrms_err=0;
error=0;
for(c=0;c<nexemptot;c++){
sprintf(buffer,"%d ",c+1);
_settextposition(8,26);
_outtext(buffer);
dig_index=fmod((double)c,(double)nclass);
if(decdisp)
draw_digit(c);

input_ex(c); /* Input LO exemplar */
readout_L1(nframes,c);
transfer_L1();
readout_L2(nframes,c,0bj_bias);

96FR1122 Final Report

A-8

err_value=error_learn(dig_index);
error=error+err_value;
totrms_err=totrms_err+rms_err;

backward(nframes,delta2gain,c,obj_bias);

train_W2(int_time,decquant,eps1,eps2);
train_W1(int_time,decquant,eps2,c,obj_bias);

}

fval=f2*sqrt(totrms_err);
fprintf(stream,",%f\n",fval);

toterr[n}=f1*error;

sprintf(buffer,"l");
_settextposition(6,39);
_outtext(buffer);

sprintf(buffer,"l");
_settextposition(6,0);
_outtext(buffer);

sprintf(buffer,"%2.3f" toterr[n]);
_settextposition(5,20);
_outtext(buffer);
value=toterr[n]*40;

for(i=0;i<value;i++){
sprintf(buffer,"%c",blk);
_settextposition(6,i);
_outtext(buffer); }

for(i=value;i<40;i++){
sprintf(buffer," ");
_settextposition(6,i);
_outtext(buffer); }

sprintf(buffer,"[");
_settextposition(6,39);
_outtext(buffer);

sprintf(buffer,"I");
_settextposition(6,0);
_outtext(buffer);

if(kbhit()){
ch=getch();
nepoch=n;
break; }

}

_dos_gettime(&time2);

96FR1122 Final Report

/***/

/* Readout Loop Using Test Patterns */
/***/

fprintf(stream,"\n\nSelected subset of neuron values during readout\n\n");
fprintf(stream,"Exemplar No. 1:
XI””””7”y197,9,”’9,’X2”9”y2’99,,ExemplaI. NO' 2: XI”’)1,7179’y1,’”7,’9’7’X2779”y2\n\n");

sprintf(buffer,"Testing Phase ");
_settextposition(4,0);
_outtext(buffer);
sprintf(buffer,"Epoch: ");
_settextposition(8,0);
_outtext(buffer);

f1=1.0/(nclass*ntest);

for(j=0;j<=9;j++){
for(i=0;i<=9;i++){
confus_test[i][j1=0;}}

for(n=0;n<nepoch2;n++){
sprintf(buffer,"%d ",n);
_settextposition(8,9);
_outtext(buffer);
sprintf(buffer,"Exemplar: ");
_settextposition(8,13);
_outtext(buffer);

error=0;
for(c=nexemptot;c<(nexemptot+ntesttot);c++){
sprintf(buffer,"%d ",c-nexemptot+1);
_settextposition(8,26);
_outtext(buffer);
dig_index=fmod((double)c,(double)nclass);
if(decdisp)
draw_digit(c);
input_ex(c);
readout_L1(nframes,c-nexemptot);
transfer_L1();
readout_L2(nframes,c-nexemptot,obj_bias);
err_value=error_read(dig_index);
error=error+err_value;

}

toterr_read[n]=f1*error;
sprintf(buffer,"%2.3f" toterr_read[n});
_settextposition(5,20);
_outtext(buffer);
value=toterr_read[n]*40;

for(i=0;i<value;i++){
sprintf(buffer,"%c",blk);
_settextposition(6,i);
_outtext(buffer); }

for(i=value;i<40;i++){
sprintf(buffer," ");
_settextposition(6,1);
_outtext(buffer); }

96FR1122 Final Report

A-10

sprintf(buffer,"");
_settextposition(6,39);
_outtext(buffer);

sprintf(buffer,"l");
_settextposition(6,0);
_outtext(buffer);

if(kbhit()){
nepoch2=n;
break; }

}

fclose(streamy);

outp(basel, READ_POS);
disp_cell(2,0);

select_OUTPUTY();

vig_xtrigger(ON);
_setvideomode(_DEFAULTMODE); /* restore video mode */

if((stream=fopen("learn34s.csv","w"))==NULL)
{printf("cannot open learn34s.csv\n");

exit(0);}

else

printf("\nlearn34s.csv file opened for writing\n");

fprintf(stream,"learn34s.c Two-Layer Optical Backprop.

With Coherent Detection (Handwritten digit recognition)\n");

fprintf(stream,"Output class encoded in Hadamard output patterns; linearized SLM\n");
fprintf(stream,"Crystal: %s",comment2);

_dos_getdate(&date);

fprintf(stream,"Date: %d-%d-%d ",date.month,date.day,date.year);
fprintf(stream," %s" ,comment);

fprintf(stream,"%s",comment3);

fprintf(stream,"No. of classes= %d\n",nclass);

fprintf(stream,"No. of training and test patterns per class= \n%d, %d\n",nexemp,ntest);
fprintf(stream,"zoomval= %d\n",zoomval);

fprintf(stream,"Display field dimension is \n%d\n",arraydim);

fprintf(stream,"xmax and ymax=\n%d, %d\n",xmax,ymax);

fprintf(stream," 1248 total neurons: 676 unipolar units in LO; 540 bipolar units in L1;
and 32 bipolar units in L2\n");

fprintf(stream,"No. of weights= 382000\n");

fprintf(stream,"No. of training and readout epochs: ");

fprintf(stream," %d; %d\n",nepoch,nepoch2);

fprintf(stream,"Exemplar integration time in sec: ");

fprintf(stream,"%f\n",inttime);

fprintf(stream,"Output Frame Grabber gain: ");

fprintf(stream," %f\n",gain2);

fprintf(stream,"Output Frame Grabber offset: ")

fprintf(stream,"%d\n",offsetval);

fprintf(stream,"Output Frame Grabber input LUT: 1 for square root; 0 for linear\n");
fprintf(stream,"%d\n",declut);

fprintf(stream,"Input Frame Grabber output LUT: O for unmodified; 1 for linearized SLM mtensny\n"),
fprintf(stream,"%d\n" declut2);

fprintf(stream,"Enter fsigmo gamma values for y1 and y2:\n");

96FR1122 Final Report A-11

fprintf(stream,"%f %f\n",fgamma_y1,fgamma_y2);

fprintf(stream,"Enter 1 for trinary quantization of weight updates; 0 otherwise\n");

fprintf(stream,"%d\n",decquant);

fprintf(stream,"Enter eps1 for y1 quantization; and eps2 for delta2 and deltal'\n")'

fprintf(stream,"%f, %f\n",epsl,eps2);

fprintf(stream,"LCLV turn-on and turn-off delays in sec= \n%f, %f\n",ontime,offtime);

fprintf(stream,"No. of samples per neuron\n%d\n",npixneu);

fprintf(stream,"No. of video frames averaged\n%d\n",nframes);

fprintf(stream,"Enter seed integer for random number generator\n");

fprintf(stream,"%d\n" ,seed2);

fprintf(stream,"Enter delta2 gain factor for backward error propagation\n”);

fprintf(stream,"%f\n",delta2gain);

fprintf(stream,"Enter number of terms in gray-scale outer-product sum for initializing weights:\n");

fprintf(stream,"%d\n",nterm);

fprintf(stream,"Enter object plane bias value for coherent detection\n");

fprintf(stream,"%d\n",0bj_bias);

fprintf(stream, "Learning start time: %d:%d:%d Stop time: %d:%d:%d\n" time1.hour,
time 1.minute,time1.second,time2 .hour,time2.minute,time2.second);

fprintf(stream, "\n\nTraining set confusion matrix for 10 digits 0 to S\n\n,,, Input Digit\n\n");
for(j=0;j<NCLASS;j++){
for(i=0;i<NCLASS;i++){
fprintf(stream," %d, ",confus_train[i}[j1);}
fprintf(stream,"\n"); }

fprintf(stream, "\n\nTest set confusion matrix for 10 digits 0 to 9\n\n,,,Input Digit\n\n");
for(j=0;j<NCLASS;j++){
for(i=0;i<NCLASS;i++){
fprintf(stream,"%d, ",confus_test[i][j]);}
fprintf(stream,"\n"); }

fprintf(stream,"\n\nLearning Error vs. Epoch\n\n");
for(n=0;n<nepoch;n++){

fprintf(stream,"%d, %2.3f\n",n,toterr[n]);}
fprintf(stream,"\n\nReading Error vs. Epoch\n\n");

for(n=0;n<nepoch2;n++){
fprintf(stream,"%d, %2.3f\n",n,toterr_read[n]);}

fclose(stream);

}
/* Prepares frame grabbers */

void prepare_fg(zoomval,declut,declut2)
int zoomval,declut,declut2;

{
int v1[2561.j;
/* Set up VFG boards. VFG 1 and VFG 2 are the INPUT and OUTPUT boards, respectively */

if(load_cnf("c:\\visnplus\\lib\\user.cnf")==NO_ERROR)
printf("Loaded configuration file\n");

else
printf("Could not load configuration file\n");

96FR1122 Final Report A-12

initsys();
err_level(2);

/* Set up VFG 2 */

select_OUTPUT();
vfg_level(gain,offsetval);
vfg_setvirame(I);
vfg_camera(VIDEOO);
vig_xtrigger(ON);

/* Modify INPUT LUT of Output Frame Grabber */

if(dectut){
for(j=0;j<=255;j++) {
v1[jl=round(sqrt(255.)*sqrt(j)); }
vig_wlutseg(INPUT,0,0,256,v1);
vfg_groupsel(GREEN); vfg_banksel(0); }

/* Set output LUTSs of Output Frame Grabber for display. */

if(declut){

for(j=0;j<=255;j++){
v1[jl=round(pow(j,2)/255.); }

v1[128]=0;
vfg_wlutseg(RED,0,0,256,v1);
v1[0]}=255;
v1[255]=0;
vfg_wlutseg(BLUE,0,0,256,v1);
v1[0]=0;
v1[128]=255;
vfg_wlutseg(GREEN,0,0,256,v1);
vfg_groupsel(GREEN); vfg_banksel(0); }

else {
for(j=0;j<=255;j++){

vi[jl=i; }

v1[128]=0;
vfg_wlutseg(RED,0,0,256,v1);
v1[0]=255;
v1[255]=0;
vfg_wlutseg(BLUE,0,0,256,v1);
v1{0]=0;
v1[128]=255;
vig_wlutseg(GREEN,0,0,256,v1);
vfg_groupsel(GREEN); vfg_banksel(0); }

vig_xtrigger(ON);

96FR1122 Final Report

A-13

/* Set up Input Frame Grabber */

switch(declut2)
{
case O:
for(j=0;j<=255;j++){
v1[jl=j;}
break;
case 1:
if((stream=fopen("linear.lut","r"))==NULL)
{ printf("cannot open linear.lut\n");
exit(0);}
else
printf("\nlinear.lut file opened for reading\n");
for(j=0;j<=255;j++){
fscanf(stream,"%d\n",&v1[j]);}
fclose(stream);
break;

}

select_INPUT();
vfg_wlutseg(GREEN,0,0,256,v1); /* Adjust Input Frame Grabber output LUT */
vfg_wlutseg(RED,0,0,256,v1);
v1[254]}=0;

v1[255]=0;
vfg_wlutseg(BLUE,0,0,256,v1);
vfg_setvirame(I);
vfg_aclear(0,0);
vfg_zoom(zoomval);
disp_cell(0,0);

}

/* Store exemplars in frame grabber memory */

void exemplar_digit(nclass,nexemp,ntest,obj_bias)

int nclass,nexemp,ntest,obj_bias;

{

int i,j,c,xbase,ybase,xindex,yindex,kx,ky,nx,ny,dig_index;
long int offset;

double fracpart,intpart;

char ch,cval;

/* Read in exemplars for digits O to 9 from bitmap file */

if ((fp=fopen("bt1430.bmp","rb"))==NULL)
{ printf("cannot open bt1430.bmp\n");
exit(0);}
else
printf("Reading exemplars from bt1430.bmp and writing to VFG 1\n");

96FR1122 Final Report

A-14

/* Store exemplars in 64x64 subframes (0,1) to (15,15) */

c=0;
for(j=0;j<55;j++){
for(i=0;1<40;i+=NCLASS){
for(dig_index=0;dig_index<nclass;dig_index++){

fracpart=modf((double)c/16.0,&intpart);
xindex=c-16*intpart;
yindex=intpart+1;
xbase=xindex*arraydim;
ybase=yindex*arraydim;
vfg_block(0,xbase,ybase,30,18,0bj_bias);
kx=0; ky=0;

for(ny=0;ny<26;ny++){
offset=0x76L+520L*j*26+ny*520L+(i+dig_index)*13;
fseek(fp,offset, SEEK_SET);

for(nx=0;nx<13;nx++){
cval=fgetc(fp);
ch=getbits(cval,7,4);

if(ch==0)
vfg_block(0,xbase+arraydim2+kx,ybase+ky,size,size,255);
else
vfg_block(0,xbase+arraydim2+kx,ybase+Kky,size,size,0);
kx++;
if(kx==30){
kx=0; ky++;}
ch=getbits(cval,3,4);
if(ch==0)
vfg_block(0,xbase+arraydim2+kx,ybase+ky,size,size,255);
else
vfg_block(0,xbase+arraydim2+kx,ybase+ky,size,size,0);
kx++;
if(kx==30){
kx=0; ky++;}
1}
c++;

printf("%d ",c);
if(c==nclass*(nexemp-+ntest))break;}
if(c==nclass*(nexemp-+ntest))break; }
if(c==nclass*(nexemp+ntest))break; }

printf("\n");
fclose(fp);

}

/* Verifies alignment of CCD pixels for optical output */

void verify_align(obj_bias)
int obj_bias;
{
int i,j,n,xbase,ybase,shift,mx,my;
char ch;
long lval klong;

96FR1122 Final Report

/* Read in output coordinates and normalization factors from align*.dat
generated using alignvfg.c. */

if ((stream=fopen("align64.dat","1"))==NULL)
{ printf("\ncannot open align64.dat\n");
exit(0);}
else
printf("\nalign64.dat coordinate file opened for reading\n");

fscanf(stream,"%d %d %d\n",&xmax,&ymax,&npixneu);

for(j=0;j<ymax;j++){
for(i=0;i<xmax;i++)}{
for(n=0;n<npixneu;n++){
fscanf(stream,"%d %d ",&xout[i]{j][n],&yout[i]{j][n]);}
fscanf(stream,"%f",&neuron_norm[i][j]);
fscanf(stream,"\n");}}

fclose(stream);

outp(base1l, READ_POS);
select_INPUT();

/* Generate SPONN input coordinate vectors */

for(i=0;i<xmax;i++){
xin_ref[i}=arraydim2+i*size;}

for(i=0;i<ymax;i++){
yin_refli]=i*size;}

for(i=0;i<xmax;i++){
xin_objli)=i*size;}

for(i=0;i<ymax;i++){
yin_obj[i]=i*size;}

/* (0,0) and (1,0) are positive and negative working areas;
ref-on in (2,0); object subsets A and B in (3,0) and (4,0), respectively.
ref-on and bias-on in object plane in (7,0). */

xbase=2*arraydim;

ybase=0;)
vig_block(0,xbase+arraydim?2,ybase,arraydim?2,arraydim,255);
xbase=7*arraydim;
vfg_block(0,xbase+arraydim?2,ybase,arraydim?2,arraydim,255);
vfg_block(0,xbase,ybase,arraydim?2,arraydim,obj_bias);

xbase=3*arraydim;
ybase=0;

shift=1;
for(j=0;j<ymax;j++){
shift=1-shift;
for(i=0;i<xmax;i+=2){
vfg_block(0,xbase+xin_obj[i+shift],ybase+yin_obj[j],size,size,255);
H

96FR1122 Final Report

xbase=4*arraydim;
ybase=0;

shift=0;
for(j=0;j<ymax;j++){
shift=1-shift;
for(i=0;i<xmax;i+=2){
vfg_block(0,xbase+xin_obj[i+shift],ybase+yin_obj[j],size,size,255);
}

select_OUTPUTY();
vfg_xtrigger(ON);

/* Verify alignment of output pixels relative to optical neurons. */

select_INPUT();
disp_cell(0,0);

/* Turn on every other input neuron in L1 object plane (LO to L1 weights) */

shift=1;
for(my=0;my<18;my++){
shift=1-shift;
for(mx=0;mx<15;mx++){
vfg_block(0,xin_obj[2*mx+shift],yin_obj{my],size,size,255);} }

/* L2 object */
for(mx=0;mx<8;mx++){
vfg_block(0,xin_obj[4*mx],yin_obj[23],size2,size9,255);}

/* L1 object */
shift=0;
for(my=0;my<9;my++){
shift=1-shift;
for(mx=0;mx<15;mx++){
vfg_block(0,xin_obj[2*mx-+shift],yin_obj[my+32],size,size,255);} }

/* L2 object */
for(mx=0;mx<8;mx++){
vfg_block(0,xin_obj[4*mx],yin_obj[41],size2,size9,255);}

/* L1 object */
shift=0;
for(my=9;my<18;my++){
shift=1-shift;
for(mx=0;mx<15;mx++){
vfg_block(0,xin_obj[2*mx+shift],yin_objimy+41],size,size,255);} }

select_OUTPUT();
lval=3*on_time;
for(klong=0;klong<lval;klong++);
snap_xtrg(video_delay);

/* Color sampled CCD pixels */

96FR1122 Final Report

A-17

/* L1 object (LO->L1) */
for(my=0;my<18;my++){
for(mx=0;mx<30;mx++){
for(i=0;i<npixneu;i++){
vfg_wpixel(0,xout[mx][my][i},yout[mx][my][i],255);} } }

/* L2 object */
for(my=0;my<2;my-++){
for(mx=0;mx<16;mx-++){
for(i=0;i<npixneu;i++){
vfg_wpixel(0,xout[1+2*mx][27+18*my][i],yout[2*mx][27+18*my][i],255);} } }

/* L1 object (L2->L1) */
for(my=0;my<9;my++){
for(mx=0;mx<30;mx++){
for(i=0;i<npixneu;i++){
vfg_wpixel(0,xout[mx][32+my][i],yout[mx][32+my][i],255);} } }
for(my=9;my<18;my-++){
for(mx=0;mx<30;mx++){
for(i=0;i<npixneu;i++){ .
vig_wpixel(0,xoutfmx][41+my][i],yout[mx][{41+my][i],255);} }}

printf("\nOutput pixels marked in red on monitor\n");

printf("Hit any key to continue\n");
for(;;)if(kbhit())break;
ch=getch();

select_INPUT();
vfg_block(0,0,0,arraydim?2,arraydim,0);

}

/* Initialize weights using sum of random 8-bit gray-scale outer-products */

void init_weights(int_time,nterm)

long int_time;

int nterm;

{

int ncount,n,xbase,ybase,mx,my,value,i,j,flag;
long lval,klong;

char ch;

printf("\nInitializing weights with sum of random bipolar outer-products...\n\nHit any key to begin learning\n");

Ival=4*int_time;
ncount=0;
flag=1;

for(;;){
if(ncount==nterm){

ncount=0;
flag=1; }

96FR1122 Final Report A-18

/* (LO)(L1) Weight initialization vectors in (5,0). */

ybase=0;
xbase=5*arraydim;
srand(seed+16000+ncount);
/¥ L0 */
for(my=0;my<23;my++){
for(mx=0;mx<30;mx++){
vfg_block(0,xin_reffmx]+xbase,yin_ref[my]+ybase,size,size,arand());

}}
/*L1*
for(my=0;my<18;my++){
for(mx=0;mx<30;mx-++){
value=arand();
vfg_block(0,xin_obj[mx]+xbase,yin_obj[my]+ybase,size,size,value);

}
/* (L1)(L.2) vectors for weight initialization in (6,0). */

xbase=6*arraydim;
srand(seed+20000+ncount);
/*L1*
for(my=0;my<9;my++){
for(mx=0;mx<30;mx++){
value=arand();
vfg_block(0,xin_ref[mx]+xbase,yin_ref[my+23]+ybase,size,size,value);
vfg_block(0,xin_obj[mx]+xbase,yin_obj[my+32]+ybase,size,size,value);

1}

for(my=0;my<9;my-++){
for(mx=0;mx<30;mx++){
value=arand();
vfg_block(0,xin_reffmx]+xbase,yin_ref[my+41]+ybase,size,size,value);
vig_block(0,xin_obj[mx]+xbase,yin_objmy+50}+ybase,size,size,value);

H

/*L2*
for(mx=0;mx<16;mx++){
value=arand();
vfg_block(0,xin_ref[2*mx]+xbase,yin_ref[32]+ybase,size2,size9,value);
vfg_block(0,xin_obj[2*mx]+xbase,yin_obj[23]+ybase,size2,size9,value);
}

for(mx=0;mx<16;mx++){
value=arand();
vfg_block(0,xin_ref[2*mx]+xbase,yin_ref[50]+ybase,size2,size9,value);
vfg_block(0,xin_obj[2*mx]+xbase,yin_obj[41]+ybase,size2,size9,value);
)

if(flag)

outp(basel, WRITE_POS);
else

outp(basel, WRITE_NEG);

disp_cell(5,0);
for(klong=0;klong<=lval;klong++);

select_ OUTPUT);
snap_xtrg(video_delay);
select_INPUT();

96FR1122 Final Report

A-19

disp_cell(6,0);
for(klong=0;klong<=int_time;klong++);

select OUTPUTY(),
snap_xtrg(video_delay);
select_INPUT();

if(kbhit())break;
ncount++;

flag=1-flag;
}

ch=getch();
outp(basel, READ_POS);

}

/* Snaps image when Cohu camera is in variable integration mode */

void snap_xtrg(video_delay)
long video_delay;

{
long jlong;

vig_xtrigger(ON);

for(jlong=0;jlong<video_delay;jlong++);

vfg_xtrigger(OFF);

for(jlong=0;jlong<video_delay;jlong++);
}

/* This routine reads out neuron (nx,my) by averaging over pixels */

float read_neuron(mx,my)
int mx,my;
{
int jk;
long jlong;
float fval;

fval=0;
for(j=0;j<npixneu;j++){
fval+=vfg_brpixel(0,xout[mx][my][j],yout{mx][my][j]);

fval=fval/npixneu;

return(fval);

}

/* Draws Exemplar No. c on the computer monitor */

void draw_digit(c)
intc;

int xindex,yindex,xbase,ybase,i,j,nx,ny,val;
double fracpart,intpart;

96FR1122 Final Report

A-20

fracpart=modf((double)c/16.0,&intpart);
xindex=c-16*intpart;

yindex=intpart+1;
xbase=xindex*arraydim+arraydim?2;
ybase=yindex*arraydim;

ny=25; nx=0;
for(j=0;j<23;j++){
for(i=0;i<30;1++){
val=vfg_rpixel(0,xbase+i,ybase+j);
if(val)
_setcolor(15);
else
_setcolor(0);
rectangle(GFILLINTERIOR, 1+nx*dxi,148+ny*dyi,1+(nx+1)*dxi, 148+(ny+1)*dyi);
nx++;
if(nx==26){nx=0; ny--;}
1}

}

/* Inputs Exemplar No. ¢ */
void input_ex(c)
int c;
{ .
int xindex,yindex;
double fracpart,intpart;

fracpart=modf((double)c/16.0,&intpart);
xindex=c-16*intpart;
yindex=intpart+1;

disp_cell(xindex,yindex);
}
/* This subroutine displays cell (m,n) */

void disp_cell(m,n)
int m,n;
{

int xbase,ybase;

xbase=m*arraydim;
ybase=n*arraydim;

vfg_roam(xbase,ybase);
}
/* This function calculates L1 values */

void readout_L 1(nframes,c)
int nframes,c;

inti1,i2,mx2,my2,val,i,j;
long int klong;
float fval;

96FR1122 Final Report

A-21

select_ OUTPUT();

for(my2=0;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
sum_pos[mx2]{my2]=0;
sum_neg[mx2][my2}=0;
1

outp(basel, READ_POS);
for(klong=0;klong<on_time;klong++);
for(i2=0;i2<nframes;i2++){
snap_xtrg(video_delay);
for(my2=0;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
sum_pos[mx2][my2]+=read_neuron(mx2,my2);}}

outp(base1, READ_NEG);
for(klong=0;klong<on_time;klong++);
for(i2=0;i2<nframes;i2++){
snap_xtrg(video_delay);
for(my2=0;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
sum_neg[mx2][my2]+=read_neuron(mx2,my2);}}

fval=1.0/nframes;
for(my2=0;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){

yy1[mx2][my2]=fsigmo(fval*(sum_pos[mx2][my2]-sum_neg{mx2][my2]),fgamma_y1);}}

if(c<2) {
for(i=0;i<30;i+=6){
for(j=0;j<18;j+=9){

fprintf(stream,"%2.3f," fval*(sum_pos[mx2][my2]-sum_neg[mx2}[my2]));} }

fprintf(stream,",");

for(i=0;i<30;i+=6){
for(j=0;j<18;j+=9){
fprintf(stream," %2.3f,",yy1[il[j1);} }
fprintf(stream,",");

select_INPUT();
}

/* Transfer L1 output to L1 input */

void transfer_L1()
{

int mx2,my2 pixval;

for(my2=0;my2<9;my2++){
for(mx2=0;mx2<30;mx2-++){
pixval=255*yy1[mx2][my2};
vfg_block(0,xin_ref[mx2},yin_reflmy2+23],size,size,pixval);
})

96FR1122 Final Report

A-22

for(my2=9;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
pixval=255*yy1[mx2][myZ2];
vfg_block(0,xin_ref[mx2],yin_reflmy2+32],size,size,pixval);

1

}

/* This function reads and calculates L2 values and displays them on the
computer monitor. */

void readout_IL.2(nframes,c,obj_bias)

int nframes,c,obj_bias;

{

int i1,i2,mx2,my2,val,xval,yval,k,c1,c2,i,j;
long int klong;

float fval;

vfg_block(0,0,23,32,9,0bj_bias);
vfg_block(0,0,41,32,9,0bj_bias);
disp_cell(0,0);

select_OUTPUTY);

for(my2=0;my2<2;my2++){
for(mx2=0;mx2<16;mx2++){
sum_pos[mx2][my2]=0;
sum_neg[mx2][my2]=0;

1

outp(basel,READ_POS);
for(klong=0;klong<on_time;klong++);
for(i2=0;i2<nframes;i2++){
snap_xtrg(video_delay);
for(my2=0;my2<2;my2++){
for(mx2=0;mx2<16;mx2++){
sum_pos[mx2][{my2]+=read_neuron(1+2*mx2,27+18*my2);}}

' outp(base1,READ_NEG);

for(klong=0;klong<on_time;klong++);

for(i2=0;i2<nframes;i2-++){

snap_xtrg(video_delay);

for(my2=0;my2<2;my2++){

for(mx2=0;mx2<16;mx2++){
‘ sum_neg[mx2][my2]+=read_neuron(1+2*mx2,27+18*my2);} }
{

c1=160+26*dxi+dx0/2; c2=150+dyo/2;
_setcolor(0);
_rectangle(_GFILLINTERIOR, 160+26*dxi,150,160+26*dxi+dx0,150+32*dyo);

k=0;
fval=1/nframes;
for(my2=0;my2<2;my2++){
for(mx2=0;mx2<16;mx2++){
yy2[mx2][my2]=fsigmo(fval*(sum_pos[mx2][my2]-sum_neg[mx2][my2]),fgamma_y2);
fval=0.5*fabs(yy2[mx2][my2]);

96FR1122 Final Report

A-23

xval=dxo*fval; yval=dyo*fval;
if(yy2[mx2][my2}>0)
_setcolor(15);
else
_setcolor(13);
rectangle(GFILLINTERIOR c1-xval,c2+k*dyo-yval,c1+xval,c2+k*dyo+yval);

k++;

1
if(c<2) {

for(mx2=0;mx2<16;mx2+=4){
fprintf(stream, " %f, ", fval*(sum_pos[mx2][0]-sum_neg[mx2][01));}

fprintf(stream,",");

for(mx2=0;mx2<16;mx2+=4){
fprintf(stream,"%2.3f,",yy2[mx2][0]); }

fprintf(stream,",");
}
select_INPUT();

vfg_block(0,0,23,arraydim,9,0);
vfg_block(0,0,41,arraydim,9,0);

}

/* Calculates L2 output error
in learning phase */

float error_learn(dig_index)
int dig_index;

{

int j,mx2,my2,class,c;

float €2,error,mindist,fval;

=0;

fval=0;

for(my2=0;my2<2;my2++){

for(mx2=0;mx2<16;mx2++){

€2=0.5*(iex[dig_index][j]-yy2[mx2][my2]);
fval=fval+e2*e2;
delta2[mx2][my2]=e2*ghump(yy2[mx2][my2]);
i+

rms_err=fval,
mindist=1000.;

for(c=0;c<NCLASS;c++){
fval=dist2(c);
if(fval<mindist){
mindist=fval;
class=c;}

96FR1122 Final Report A-24

confus_train[dig_index]{class]++;

if(class==dig_index){
error=0.;
_setcolor(_GREEN);
sprintf(buffer,"Correct ");
_settextposition(10,56);
_outtext(buffer);
setcolor(WHITE); }

else{
error=1.;
_setcolor(_RED);
sprintf(buffer,"Incorrect");
_settextposition(10,56);
_outtext(buffer);
_setcolor(_WHITE);}

return(error);

}

/* Calculates distance squared between current value of output vector yy2
and exemplar output pattern ¢ */

float dist2(c)
intc;

int mx2,my?2,j;
float fval,

=0
fval=0;
for(my2=0;my2<2;my2++){
for(mx2=0;mx2<16;mx2++){
fval+=pow(yy2[mx2][my2]-iex{c][j].2);
i}

return(fval);

}

/* Calculates L2 output error for exemplar c in reading phase */

float error_read(dig_index)
int dig_index;

{

int mx2,my2,class,c;

float e2,mindist,error,fval;

mindist=1000.;
/* Choose output class */

for(c=0;c<NCLASS;c++){
fval=dist2(c);
if(fval<=mindist){
mindist=fval;
class=c;}

}

96FR1122 Final Report

A-25

confus_test[dig_index][class]++;

if(class==dig_index){
error=0;
settextcolor(GREEN);
sprintf(buffer,"Correct ");
_settextposition(10,56);
_outtext(buffer);
_settextcolor(WHITE); }

else{
error=1;
_settextcolor(_RED);
sprintf(buffer,"Incorrect");
_settextposition(10,56);
_outtext(buffer);
settextcolor(WHITE); }

return(error);

}

/* Backpropagate the error signal. */

void backward(nframes,delta2gain,c,obj_bias)
int nframes,c,obj_bias;

float delta2gain;

{

long int klong;

int mx2,my2,i2,pixval;

float fval,el;

/* Bias for coherent readout of L1 */

vfg_block(0,0,32,32,9,0bj_bias);
vfg_block(0,0,50,32,9,0bj_bias);
vig_block(0,arraydim,32,32,9,0bj_bias);
vfg_block(0,arraydim,50,32,9,0bj_bias);

/* Write delta2 to L2 reference */

for(my2=0;my2<2;my2++){
for(mx2=0;mx2<16;mx2++){
pixval=delta2gain*255*delta2[mx2]{my?2];
if(pixval>0)
vig_block(0,xin_ref[2*mx2],yin_ref[18*my2+32],size2,size9,pixval);
else
} ;'fg_block(O,arraydim+xin_ref[2*mx2],yin_reﬂ 18*my2+32],size2,size9,-pixval);

/* Read L1 output and calculate deltal */

select OUTPUTY();

for(my2=0;my2<18;my2++){
for(mx2=0;mx2<10;mx2++){
sum_pos[mx2][{my2]=0;
sum_neg[mx2][my2]=0;}}

96FR1122 Final Report A-26

outp(basel, READ_POS);
for(klong=0;klong<on_time;klong++);

for(12=0;i2<nframes;i2++){
snap_xtrg(video_delay);
for(my2=0;my2<9;my2-++){
for(mx2=0;mx2<30;mx2++){
sum_pos[mx2][my2]+=read_neuron(mx2,32+my2);} }

for(my2=9;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
sum_pos[mx2][my2]}+=read_neuron(inx2,41+my2);}}

}
select_INPUT();
disp_cell(1,0);

select_OUTPUT();
outp(basel, READ_NEG);
for(klong=0;klong<on_time;klong++);

for(i2=0;i2<nframes;i2++){
snap_xtrg(video_delay);
for(my2=0;my2<9;my2++){
for(mx2=0;mx2<30;mx2++){
sum_neg[mx2][my2]+=read_neuron(mx2,32+my2);} }

for(my2=9;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
sum_neg[mx2][my2]+=read_neuron(mx2,41+my2);}}

fval=1.0/(255*nframes);
for(my2=0;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
el=-fval*(sum_pos[mx2][my2]-sum_neg[mx2][my2]);
deltal[mx2][my2]=ghump(yy1[mx2][my2])*el;}}

if(c<2) {
for(my2=0;my2<18;my2+=9){
for(mx2=0;mx2<30;mx2+=10){
el=-fval*(sum_pos[mx2][my2]-sum_neg[mx2][my2]);
fprintf(stream,"%f,",e1);} }

fprintf(stream,",");
for(my2=0;my2<18;my2+=9){

for(mx2=0;mx2<30;mx2+=10){
fprintf(stream, " %f," deltal[mx2][my2]); } }

QGF R1122 Final Report

A-27

fprintf(stream,"”,");
select_INPUT();

vfg_block(0,0,32,arraydim,9,0);
vfg_block(0,0,50,arraydim,9,0);
vfg_block(0,arraydim,32,arraydim,9,0);
vfg_block(0,arraydim,50,arraydim,9,0);

}
/* This function updates the weights between L2 and L1 */

void train_W2(int_time,decquant.epsl,eps2)
int decquant;

float eps1,eps2;

long int int_time;

{

int mx2,my2,pixval;

long int klong;

/* Write delta2 to L2 reference */

for(my2=0;my2<2;my2++){
for(mx2=0;mx2<16;mx2++){
if(decquant)
pixval=255*hsgn(delta2[mx2][my2],eps2);
else
pixval=255*delta2[mx2][my2];

if(pixval>=0){
vig_block(0,xin_ref[2*mx2],yin_ref[18*my2+32],size2,size9,pixval);
vfg_block(0,9*arraydim+xin_ref[2*mx2],yin_ref[18*my2+32],size2,size9,pixval); }
else{
vfg_block(0,arraydim+xin_ref[2*mx2],yin_ref] 18*my2+32],size2,size9,-pixval);
vfg_block(0,8*arraydim+xin_ref[2*mx2],yin_ref[18*my2+32],size2,size9,-pixval);

1
/* Write y1 to L1 object */

for(my2=0;my2<9;my2++){
for(mx2=0;mx2<30;mx2++){
if(decquant)
pixval=255*hsgn(yy1[mx2}{my2].epsl);
else
pixval=255*yy1[mx2]{my?2];

if(pixval>=0){
vfg_block(0,xin_obj{mx2],yin_obj[my2+32],size,size,pixval);
vfg_block(0,arraydim+xin_obj[mx2],yin_obj[my2+32],size,size,pixval); }
else{ :
vfg_block(0,9*arraydim+xin_obj{mx2],yin_obj{my2+32],size,size,-pixval);
vfg_block(0,8*arraydim+xin_obj{mx2],yin_objlmy2+32],size,size,-pixval);}
1

96FR1122 Final Report

A-28

for(my2=9;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
if(decquant)
pixval=255*hsgn(yy1{mx2][my2],eps1);
else
pixval=255*yy1[mx2][my2];

if(pixval>=0){
vfg_block(0,xin_obj[mx2],yin_obj[my2+41],size,size,pixval);
vfg_block(0,arraydim+xin_obj[mx2],yin_obj[my2+41],size,size,pixval); }
else{
vfg_block(0,9*arraydim+xin_obj[mx2],yin_obj[my2-+41]},size,size,-pixval);
vfg_block(0,8*arraydim+xin_obj[mx2],yin_objimy2+41],size,size,-pixval);}

1}

/* Write delta2 to L2 object */

for(my2=0;my2<2;my2++){
for(mx2=0;mx2<16;mx2++){
if(decquant)
pixval=255*hsgn(delta2[mx2][my2],eps2);
else
pixval=255*delta2[mx2][my2};

if(pixval>=0){
vfg_block(0,xin_obj[2*mx2],yin_obj[18*my2+23],size2,size9,pixval);

vfg_block(0,9*arraydim+xin_obj[2*mx2],yin_obj[18*my2+23],size2,size9,pixval); }

else{

vfg_block(0,arraydim+xin: obj[2*mx2],yin_obj[18*my2+23],size2,size9,-pixval);
vfg_block(0,8*arraydim+xin_obj[2*mx2],yin_obj[18*my2+23],size2,size9,-pixval);

}
1

/* Write y1 to L1 reference */

for(my2=0;my2<9;my2++){
for(mx2=0;mx2<30;mx2++){
if(decquant)
pixval=255*hsgn(yy1[mx2][my2],eps1);
else
pixval=255*yy1[mx2][my2];

if(pixval>=0){
vig_block(0,xin_ref[mx2],yin_reffmy2+23],size,size,pixval);
vig_block(0,arraydim+xin_ref{mx2],yin_ref{[my2+23],size,size,pixval); }
else{
vig_block(0,8*arraydim+xin_ref[mx2},yin_ref{my2+23],size,size,-pixval);
vfg_block(0,9*arraydim+xin_ref[mx2},yin_ref[my2+23],size,size,-pixval); }

H

for(my2=9;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
if(decquant)
pixval=255*hsgn(yy 1 [mx2][my2],eps1);
else
pixval=255*yy1[mx2][my2];

96FR1122 Final Report

A-29

if(pixval>=0){
vfg_block(0,xin_ref[mx2],yin_ref[my2+32],size,size,pixval);
vfg_block(0,arraydim+xin_ref[mx2],yin_ref[my2+32],size,size,pixval);}
else{
vfg_block(0,8*arraydim+xin_ref{mx2],yin_refimy2+32],size,size,-pixval);
vfg_block(0,9*arraydim+xin_ref[mx2],yin_ref[my2+32],size,size,-pixval); }

1}

/* Adjust W2 weights in 4 phases to account for ++, --,+-, and -+ combinations */

disp_cell(0,0); /* ++ */

outp(basel, WRITE_POS);
for(klong=0;klong<=int_time;klong++);
disp_cell(8,0); /* -- */
for(klong=0;klong<=int_time;klong++);
disp_cell(1,0); /* -+ */

outp(base1l, WRITE_NEG);
for(klong=0;klong<=int_time;klong++);
disp_cell(9,0); /* +- */
for(klong=0;klong<=int_time;klong++);
outp(base1,READ_POS);

vig_block(0,0,23,arraydim,36,0);

vfg_block(0,arraydim,23,arraydim,36,0);

vfg_block(0,8*arraydim,23,arraydim,36,0);

vig_block(0,9*arraydim,23,arraydim,36,0);
}

/* This function updates the weights between LOand L1 */

void train_W1(int_time,decquant.eps2,c,obj_bias)
long int int_time;

int c,decquant,obj_bias;

float eps2;

{

int mx2,my2,xbase,ybase,pixval,xindex,yindex;
long int klong;
double fracpart,intpart;

fracpart=modf((double)c/16.0,&intpart);
xindex=c-16*intpart;

yindex=intpart+1;

/* Display LO exemplar */
disp_cell(xindex,yindex);

/* Write deltal to L1 object */

xbase=xindex*arraydim;
ybase=yindex*arraydim;

/* Positive adjustment of LO-L1 weights */

for(my2=0;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){
if(decquant)
pixval=255*hsgn(deltal[mx2][{my2],eps2);

96FR1122 Final Report A-30

else
pixval=255*deltal [mx2][my2];
if(pixval>=0)
vfg_block(0,xbase+xin_objlmx2],ybase+yin_obj[my2],size,size,pixval);
else
vfg_block(0,xbase+xin_obj[mx2],ybase+yin_obj[my?2],size,size,0);
H

outp(basel, WRITE_POS);
for(klong=0;klong<=int_time;klong++);

/* Negative adjustment of LO-L1 weights */

for(my2=0;my2<18;my2++){
for(mx2=0;mx2<30;mx2++){

if(decquant)
pixval=255*hsgn(deltal[mx2][my2],eps2);

else
pixval=255*deltal [mx2][my2];

if(pixval<0)
vfg_block(0,xbase+xin_objlmx2],ybase+yin_obj[my2],size,size,-pixval);

else
vig_block(0,xbase+xin_obj[mx2],ybase+yin_obj[my2],size,size,0);

}}

outp(base1l, WRITE_NEG);
for(klong=0;klong<=int_time;klong++);
outp(base1l,READ_POS);

vig_block(0,xbase,ybase,30,18,0bj_bias);

}

/* Output layer neuron sigmoidal activation function (range is [-1,1]) */

float fsigmo(fsum,gamma)

float fsum,gamma;

{

float fval,
fval=2.0/(1+exp(-gamma*fsum))-1;
return(fval);

}

/* Output layer backpropagation function */

float ghump(fsum)

float fsum;

{

float fval,
fval=(1.0-fsum)*(1.0+fsum);
return(fval);

}

96FR1122 Final Report

A-31

/* Trinary quantization function with outputs (-1,0,1) */

int hsgn(net,eps)
float net,eps;

{

int ival;

if(net<-eps)
ival=-1;

else if(net>eps)
ival=1;

else
ival=0;

return(ival);

}

/* Returns 1 or -1 randomly */
int brand()

{
return(2*getbits(rand(),0,1)-1);

/* Returns random integer uniformly distributed between 0 and 255 */

int arand()

{

int ival;

ival=255.0*rand()/RAND_MAX;
return(ival);

}

/* This function gets n bits to the right of and including position p
in integer x. */

getbits(x,p,n)
unsigned x,p,n;

{
return((x>>(p+1-n))&~(~0<<n));
}

/* Returns 0 if arguments have same sign, 1 otherwise */

int compare_sign(m,fn)
int m;

float fn;

{

int val;

if(m*fn>=0)
val=0;

else
val=1;

96FR1122 Final Report

A-32

return(val);

}

/* This function rounds a floating point number to the nearest integer */

int round(fval)
float fval;
{
int val;
float remain;

remain=fval-floor(fval);
if(remain>=0.5)
val=ceil(fval);

else

val=floor(fval);

return(val);

}
/* Selects OUTPUT VFG board */

void select_OUTPUT()
{

select_vig(SPONN_INPUT);
write_reg(vig[MAPEN],0);
vfg_memen(OFF);
select_vfg(SPONN_OUTPUT);
write_reg(vfglMAPEN],1);
vfg_memen(ON);

}
/* Selects INPUT VFG board */

void select INPUT()
{

select_vfg(SPONN_OUTPUT);
write_reg(vig[MAPEN],0);
vfg_memen(OFF);
select_vig(SPONN_INPUT);
write_reg(vfg[MAPEN],1);
vfg_memen(ON);

}

96FR1122 Final Report

A-33

Appendix B
PUBLICATIONS AND PRESENTATIONS

B.1 Publications

Y. Owechko, “Applications of Liquid Crystals in Image and Signal Processing,” in A Guide to
Liquid Crystal Research, P. J. Collings and J. S. Patel, eds., to be published in 1996 by Oxford

University Press.

Y. Owechko, “Opportunities for Optoelectronics in Holographic Data Storage and Neural
Networks,” in Opportunities for Innovation: Optoelectronics, A. Goutzoulis, ed., NIST publication
NIST GCR 95-672, 1995.

Y. Owechko and B. H. Soffer, “Holographic Neurocomputer Utilizing Laser-Diode Light Source,”
SPIE Proceedings Vol. 2565, (1995).

Y. Owechko and B. H. Soffer, “Holographic Neural Networks Based on Multi-Grating Processes,” in
Real-Time Optical Information Processing, B. Javidi and J. Horner, eds., Academic Press (1994).

Y. Owechko, “Applications of Spatial Light Modulators in Optical Processing,” in Spatial Light
Modulators: Materials, Devices, and Applications, U. Efron, ed., Marcel Dekker (1994).

Y. Owechko, “Optical Neural Networks Based on Real-Time Holography,” Proceedings of
International Topical Conference on Research Trends in Nonlinear and Quantum Optics, La Jolla,

1994.

Y. Owechko, “Cascaded-Grating Holography for Artificial Neural Networks,” Applied Optics 32,
1380-1398 (1993).

Y. Owechko and B. H. Soffer, “Optical Neurocomputer Based on Multiple-Grating Holography,”
Proceedings of Government Microcircuit Applications Conference, New Orleans, 1993.

Y. Owechko and B. H. Soffer, “Holographic Neurocomputer for Backpropagation Based on
Cascaded-Grating Holography,” SPIE Proceedings Vol. 2026, (1993).

Y. Owechko and B. H. Soffer, “Implementation of Neural Networks Based on Photorefractive Beam
Fanning,” Proceedings of Topical Meeting on Photorefractive Materials, Effects, and Devices, Kiev,
Ukraine, 1993.

Y. Owechko, “Optical Implementation of Backpropagation Neural Networks Using Cascaded-
Grating Holography,” International Journal of Optical Computing 2, 201-231, (1991) (This issue was
published in 1993). (Invited Paper)

B. H. Soffer and Y. Owechko, “Recent Advances in Optical Neural Networks,” Proceedings of
Conference “From Galileo’s ‘Occhialino’ to Optoelectronics”, Padov University, June 9-12, 1992,
World Scientific. (Invited Paper)

96FR1122 Final Report B-1

Y. Owechko and B. H. Soffer, “A Programmable Optical Neuro-Computer Based on Photorefractive
Holograms,” Proceedings of Government Microcircuit Applications Conference, Las Vegas, 1992.

Y. Owechko and B. H. Soffer, “Multi-Layer Optical Neural Networks,” SPIE Proceedings Vol 1773,
1992.

Y. Owechko and B. H. Soffer, “An Optical Interconnection Method for Neural Networks Using Self-
Pumped Phase Conjugate Mirrors,” Optics Letters 16, 675-677 (1991).

G. J. Dunning, Y. Owechko, and B.H. Soffer, “Hybrid Opto-Electronic Neural Networks Using a
Mutually-Pumped Phase Conjugate Mirror,” Optics Letters 16, 928-930(1991).

Y. Owechko and B. H. Soffer, “Optical Neural Networks Based on Liquid Crystal Light Valves and
Photorefractive Crystals,” Proceedings of SPIE/SPSE Symposium on Electronic Imaging Science
and Technology, San Jose, Feb. 1991, Vol. 1455, 136-144. (Invited Paper)

B.H. Soffer, Y. Owechko, and G.J. Dunning, “A Photorefractive Optical Neural Network,” SPIE
Proceedings Vol. 1347, 1, (1990). (Invited Paper)

B.H. Soffer, Y. Owechko, and G.J. Dunning, “A Photorefractive Optical Neural Network,”
Proceedings of 15th Congress of International Commission for Optics, Aug. 1990, Garmish,

Germany.

B.2 Presentations _
B. H. Soffer and Y. Owechko, “An Optical Neural Network Based on Distributed Holographic
Gratings,” II Reunion Iberoamericana de Optica, Guanajuato, Mexico, 1995. (Invited Talk)

Y. Owechko and B. H. Soffer, “An Optical Neural Network Based on Distributed Holographic
Gratings for ATR”, International Conference on Neural Networks, Perth, 1995.

Y. Owechko and B. H. Soffer, “Holographic Neurocomputer Utilizing Laser-Diode Light Source,”
SPIE Conference on Optical Implementation of Information Processing, San Diego, 1995.

Y. Owechko, “Optical Neural Networks Based on Real-Time Holography,” International Topical
Conference on Research Trends in Nonlinear and Quantum Optics, La Jolla, 1993. (Invited Talk)

Y. Owechko, “Holographic Neural Networks: A Systems Perspective,” OSA Topical Meeting on
Optical Computing, Palm Springs, 1993. (Invited Talk)

Y. Owechko and B. H. Soffer, “Optical Neurocomputer Based on Multiple-Grating Holography,”
Government Microcircuit Applications Conference, New Orleans, 1993.

Y. Owechko, “Programmable Optical Neural Networks,” OSA 1992 Annual Meeting, Albuquerque,
1992. (Invited Talk) v

Y. Owechko and B. H. Soffer, “A Programmable Optical Neuro-Computer Based on Photorefractive
Holograms,” Government Microcircuit Applications Conference, Las Vegas, 1992.

96FR1122 Final Report B-2

Y. Owechko, Lake Louis conference on electronic and optical implementations of neural networks,
1992.

Y. Owechko and B. H. Soffer, “Multi-Layer Optical Neural Networks,” SPIE Conference 1773 on
Photonics for Computers, Neural Networks, and Memories, San Diego, 1992.

B. H. Soffer and Y. Owechko, “Recent Advances in Optical Neural Networks,” Galilean Year
Celebration Conference, Padova, Italy, 1992. (Invited Talk)

Y. Owechko and B. H. Soffer, “Recent Advances in Optical Neural Networks Using Beam Fanning
in Photorefractive Crystals,” LEOS ‘91, San Jose, Nov. 1991. (Invited Talk)

Y. Owechko and B. H. Soffer, “Optical Neural Networks Based on Liquid Crystal Light Valves and
Photorefractive Crystals,” SPIE/SPSE Symposium on Electronic Imaging Science and Technology,
San Jose, Feb. 1991. (Invited Talk)

Y. Owechko, G. Dunning, and B. Soffer, “Optical Neural Networks Based on Stimulated
Photorefractive Effects,” OSA 1990 Annual Meeting, Boston. (Invited Talk)

Y. Owechko, “Holographic Neural Networks,” 1990 International Topical Meeting on Optical
Computing, Kobe, Japan. (Invited Talk)

Y. Owechko, B.H. Soffer, and G.J. Dunning, “Photorefractive Optical Neural Networks,”
International Joint Conference on Neural Networks, Washington, D.C., 1990. (Invited Talk)

G.J. Dunning and Y. Owechko, “Multi-Port Optical Neural Network Using a Mutually Pumped
Phase Conjugate Mirror,” IEEE Meeting on Nonlinear Optics: Materials, Phenomena, and Devices,
Kuau, 1990.

G.J. Dunning, Y. Owechko, and B.H. Soffer, “Optical Neural Network Using a Mutually Pumped
Phase Conjugate Mirror,” OSA Annual Meeting, Orlando, 1989.

Y. Owechko, “Self-Pumped Optical Neural Networks,” OSA Topical Meeting on Optical
Computing, Salt Lake City, 1989.

Y. Owechko, “Stimulated Photorefractive Optical Neural Networks,” Third Annual Parallel
Processing Symposium, Cal. State Fullerton, 1989. (Invited Talk)

96FR1122 Final Report B-3

